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We consider the OK Corral model formulated by Williams and McIlroy (11) and

later studied by Kingman. (7) In this paper we refine some of Kingman’s results,

by showing the connection between this model and Friedman’s urn, and using

Rubin’s construction to decouple the urn. Also we obtain the exact expression

for the probability of survival of exactly S gunmen given an initially fair
configuration.
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1. INTRODUCTION

In this paper we extend the results of Kingman (7) for the OK Corral model

using decoupling of an urn model into two independent continuous-time

birth processes. Not only do we demonstrate an alternative and relatively

simple method, but also we refine some of Kingman’s theorems. On the

side, we also obtain results on the speed of convergence for Friedman’s urn.

The OK Corral process (Xt, Yt), t=0, 1, 2,..., is a Z2 valued process

used to model the famous gunfight. Its transition probabilities satisfy

P((Xt+1, Yt+1)=(Xt−1, Yt) | (Xt, Yt))=
Yt

Xt+Yt
,

P((Xt+1, Yt+1)=(Xt, Yt−1) | (Xt, Yt))=
Xt
Xt+Yt

.



The process starts with X0=Y0=N,
3 and runs till either of Xt or Yt

3 In Kingman (7) the notations N denotes Xt+Yt

becomes zero. The value of the other process at this time is denoted by SN,
further abbreviated as S. Williams and McIlroy (11) have found the correct
scaling for the limiting distribution of S, which surprisingly turns out to
be N3/4. In Kingman (7) the limiting distribution of S/N3/4 is found. The
results were obtained using martingale techniques to compute the asymp-

totic moments of the above distribution. In our paper we obtain the

asymptotic expression for the probability that S=s for each s, provided
s=O(N3/4).
A seemingly unrelatedmodel is an urnmodel introduced by Friedman. (5)

In this model, the urn contains black and white balls. A ball is chosen at

random, and then it is replaced by a balls of the same color and b balls
of the opposite color. A special case of Friedman’s urn (namely, a=0,
b=1),4 is the following process: (X −t, Y

−

t), t=0, 1, 2,...,

4 a > 0, b=0 corresponds to Pólya urn

P((X −t+1, Y
−

t+1)=(X
−

t+1, Y
−

t) | (X
−

t, Y
−

t))=
Y −t

X −t+Y
−

t

,

P((X −t+1, Y
−

t+1)=(X
−

t, Y
−

t+1) | (X
−

t, Y
−

t))=
X −t

X −t+Y
−

t

.

(1)

Freedman’s (4) results for this particular urn give

X −t−Y
−

t

t
0
D

N 10, 1
3
2 ,

but do not say much about how fast (X −t, Y
−

t) would approach the state
X −t % Y

−

t if the process is started from an off-equilibrium position X
−

0=1,
Y −0=S. The method of our paper answers (in a sense) this question.

2. COUPLING

Rather than computing the probabilities for the OK Corral process

directly, we couple it with Friedman’s urn, and solve the relevant problem

for the urn first.

We start the OK corral process by setting X0=Y0=N, let y=
min{t: Xt=0 or Yt=0} and S=Xy+Yy. From now on, we condition on
the event Yy > 0, so that S — Yy.
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Suppose that Y1 < Y0. Then for each path connecting (N, N) with
(0, S) there exist k \ 1 and two integer-valued sequences x0, x1,..., xk and
y0, y1,..., yk such that xi−1 < xi, yi−1 < yi for all i with x0=0, y0=S,
xk=yk=N and the process (Xt, Yt) comes to (0, S) following the path

(xk, y), y=yk, yk−1,..., yk−1,

(x, yk−1), x=xk, xk−1,..., xk−1,

x

(x, y0), x=x1, x1−1,..., x0.

The probability of such a path equals

1

(2N)(2N−1) · · · (S+1)
1Dk
i=1

xy i−y i−1i
21Dk
i=1

yx i−x i−1i−1
2 . (2)

Now consider Friedman’s urn with the transition probabilities (1). The

probability that (XŒ, YŒ) comes to (N, N) from (0, S) following the path
described above, moving backwards, equals

1

S(S+1) · · · (2N−1)
1Dk
i=1

xy i−y i−1i
21Dk
i=1

yx i−x i−1i−1
2 . (3)

Comparing the probabilities (2) and (3) we observe that

P(r) :=P((X, Y) hits (0, S) | (X0, Y0)=(N, N))

=
S

2N
P((XŒ, YŒ) hits (N, N) | (X −0, Y −0)=(0, S))=:

S

2N
×P(q) (4)

actually for any path connecting (0, S) and (N, N) (the case X1 < X0 can
be analyzed in the same way). Note that the relation above also holds for

paths connecting arbitrary two points, not necessarily (0, S) and (N, N).
Therefore, to calculate P(r) it suffices to compute P(q). This is what we
do next.

3. DECOUPLING

As mentioned before, Freedman’s results are not applicable for the

speed of the convergence, while this is what we actually need (to compute

asymptotically P(q) when N and S are large).
To this end, we will use a procedure known as Rubin’s construction due

to Herman Rubin introduced in Davis (3) for the study of reinforced ran-

dom walks. Later his method was also applied to a variety of problems,
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ranging from rather theoretical ones, mostly related to reinforced random

walks, (see Sellke (10) and Limic (8)) to the applied ones (see Khanin and

Khanin (6)).

The essence of this construction is extremely simple and in our case

runs as follows. Consider two independent birth processes, Ut and Vt, where
t is continuous, both with the transition rate lk dt=P(Ut+dt=Ut+1 | Ut=k)
=1/k dt (the same formula holds for Vt). Set U0=1 and V0=S. From the
properties of independent exponential random variables it follows that the

process (Ut, Vt) considered at the times when either of its coordinates
changes, has the same distribution as the Friedman’s urn (XŒ, YŒ) described
above. Now the independence of the coordinates of (Ut, Vt) allows us to
compute desired distributions.

On a side, we would like to mention that Rubin’s construction is

apparently related to the Athreya and Karlin (1) embedding of the urn in a

single global process.

4. COMPUTING P(q)

For an integer n let Wn=inf{t: Ut=n} (W
−

n=inf{t: Vt=n} resp.) be
the nth waiting time for the process U (V resp.). Since Wi+1−Wi are inde-
pendently exponentially distributed,Wn andW

−

n can be represented as

Wn=C
n−1

k=1

ktk,

W −

n= C
n−1

k=S

kzk,

(5)

where tk’s and zk’s (k=1, 2,...) are IID exponential random variables with
rate 1. The process (Ut, Vt) passes through the point (N, N) if and only if
WN ¥ [W −

N, W
−

N+1) orW
−

N ¥ [WN, WN+1).
Let us compute the probability of the first event. To simplify nota-

tions, set A=WS, B=WN−WS and C=W
−

N. We have

P(WN ¥ [W −

N, W
−

N+1))=P(A−NzN < C−B [ A). (6)

Note that B−C and zN are independent of A. Hence, integrating by parts,

P(A−NzN < (C−B) [ A | A)=F.
0

1

N
e−z/N dz FA

A−z
fC−B(x) dx

=F.
0
e−z/NfC−B(A−z) dz, (7)

where fC−B(x) is the pdf of the random variable C−B.
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Next, we need

Lemma 1. As SQ.,

A−S(S−1)/2

`S3/3
0
D

N(0, 1). (8)

Also, when both NQ. and SQ. such that S=o(N)

C−B

`2N3/3
0
D

N(0, 1). (9)

Proof. Immediately follows from the representation (5), CLT with

Lyapunov conditions (see Billingsley, (2) p. 312), and the well-known formula

for ;n−1
i=1 i

p, p=2, 3, and 4. i

Now we want to strengthen (9). From now on we assume that

S=o(N).

Lemma 2. Let fN(x) be the pdf of (C−B)/`2N3/3 and f(x) be the
pdf ofN(0, 1). Then for any E > 0

sup
x
|fN(x)−f(x)|=o(N

−(1− E)).

Proof. By the inversion formula,

fN(x)−f(x)=
1

2p
F.
−.
e−itx(fN(t)−e

−t
2
/2) dt, (10)

where

fN(t)=F.
−.
e itxfN(x) dx=D

N−1

k=S

1

1+
k2t2

2N3/3

,

since C−B=;N−1
k=S kzk−ktk. Consequently, fN(t) can be written as

fN(t)=exp 1 −t22+ 940 t
4

N
−
9

56

t6

N2
+·· ·+o(t2+t4/N+· · · )2 (11)
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or

fN(t)=
1

1+
t2

2
+
t4

8
+· · ·+o(t2+t4/N+· · · )

. (12)

Let us split the area of integration in (10) into two parts: [−Nd, Nd] where
0 < d <min(1/2, E/5), and its compliment. Then

: FNd
−N

d
e−itx(fN(t)−e

−t
2
/2) dt : [ 9

40N
FN

d

−N
d
|e−itx−t

2
/2| t4(1+o(1)) dt

=O(N−(1−5d)) (13)

using (11) and

: F
t ¨ [−N

d
, N
d
]
e−itx(fN(t)−e

−t
2
/2) dt : [ F

t ¨ [−N
d
, N
d
]

˛ 1

1+
t2

2
+· · ·

+e
−
t2

2 ˇ dt
=o(N−1) (14)

using (12). Combining (13) and (14), from the formula (10) we deduce that

|fN(x)−f(x)|=O(N
−(1−5d))+o(N−1)=o(N−(1− E))

uniformly in x. i

From Lemma 2 it follows that for any E > 0

fC−B(y)=

exp 1− y2

4N3/3
2

`4pN3/3
+o(N−2.5+E).

Plugging this into (7), we have

P(WN ¥ [W −

N, W
−

N+1) | A)=F.
0
e−z/N rexp 1 (−(A−z)24N3/3

2
`4pN3/3

+o(N−2.5+E)
s dz

=F.
0

exp 1−u−(A−Nu)2
4N3/3
2

`4pN/3
du+o(N−1.5+E).
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Under the assumption that A is of order N3/2, the integral in the RHS
equals

F logN
0

exp 1−u−(A−Nu)2
4N3/3
2

`4pN/3
du+O(N−1.5)

=

exp 1− 3A2
4N3
2

`4pN/3
11− 1

N
211+O 1 logN

N1/2
22+O(N−1.5)

=
e−

3A2

4N3

`4pN/3
+O 1 logN

N
2 ,

whence

P(WN ¥ [W −

N, W
−

N+1) | A)=
e−

3A2

4N3

`4pN/3
+O 1 logN

N
2 . (15)

Next we want to refine (8).

Lemma 3.

sup
x

:P 1A−S(S−1)/2
`S3/3

[ x2−F(x): [ const
`S

, (16)

where F(x) is the cdf of the standard normal distribution.

Proof. This result follows, e.g., from Theorem V.3.6 in Petrov. (9) i
Now suppose that S is of order N3/4, and let

r :=
`3 S2

N3/2
.

Lemma 3 yields

P(|A−S2/2| \ S3/2 log S) [ F(−log S)+(1−F(log S))+O(S−1/2)

=O(S−1/2),

hence with a large probability A=O(S2)=O(N3/2) which is consistent with
our previous assumptions.Using (15) we conclude thatP(WN ¥ [W −

N, W
−

N+1))
equals
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P 1WN ¥ [W −

N, W
−

N+1)| :A−S22 : [ S 32 log S2+O 1 1

(SN)1/2
+
logN

N
2

=
exp {−3[S2/2+O(S

3
2 log S)]2/(4N3)}

`4pN/3
+O(N−3/8−1/2)

=
e−r

2
/16

`4pN/3
51+O 1 logN

N3/8
26 . (17)

The formula for P(W −

N ¥ [WN, WN+1)) can be obtained similarly, and
the expression for it also equals the RHS of (17) because {W −

N ¥

[WN, WN+1)}={A [ C−B < A+NtN} andNtN=
D NzN andNtN=o(A) a.s.

Hence,

P(q)=P(WN ¥ [W −

N, W
−

N+1))+P(W −

N ¥ [WN, WN+1))

== 3
pN
e−r

2
/16 51+O 1 logN

N3/8
26 ,

implying by (4)

P(r)== r

4p`N/3
e−r

2
/16+O 1 logN

N9/8
2= r

2S`p
e−r

2
/16+O 1 log S

S3/2
2 .
(18)

5. RESULTS AND DISCUSSION

Recall that throughout the most of previous arguments we supposed

that Xy=0, and now it is time to use the symmetry between X and Y.
Therefore, if the number of the gunmen on each side at the beginning is N,
then the probability that the number of the survivals after one of the

groups is completely eliminated is S equals

=
r

S`p
e−r

2
/16+O 1 log S

S3/2
2

by doubling the expression in (18).

Using the same technique it is not hard to see that if the number of the

gunmen is not exactly equal at the beginning of the game, but at the same

time the difference is not significant, namely o(N1/2), the the formula above
does not change with the exception of the correction term, which becomes

O 1 log S
S3/2
2+O(|X0−Y0 |/N0.5).
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This can be obtained by noting that if X0−Y0=o(N
1/2) then the expres-

sion for A can be ‘‘corrected’’ by the term of order o(N3/2). This is again
consistent with Kingman. (7)

6. EXACT FORMULA

Note that the probability in (6) can be expressed as

F.
0
e−z/NfA+B−C(z) dz, (19)

where fA+B−C(z) is the density of random variable A+B−C, by arguments
identical to the one applied in (7). To compute fA+B−C(z) we use Fourier
transform:

E e il(A+B−C)=D
N−1

k=1

1

1−ikl
×D
N−1

k=S

1

1+ikl
= C
N−1

k=1

ak
1−ikl

+ C
N−1

k=S

bk
1+ikl

for some ak’s and bk’s. Using standard techniques, we obtain that

ak=
(−1)N−k−1 k2N−S−2(k+S−1)!

(k−1)! (N−1+k)! (N−1−k)!
, k=1, 2,..., N−1,

bk=
(−1)N−k−1 k2N−S−2k!

(k−S)! (N−1+k)! (N−1−k)!
k=S, S+1,..., N−1.

and therefore fA+B−C(z)=;N−1
k=1 akk

−1e−z/k+;N−1
k=S bkk

−1e−z/k. Plugging this
into (19) and computing the integral, we calculate the exact expression for

P(WN ¥ [W −

N, W
−

N+1)). Repeating this argument for P(W −

N ¥ [WN, WN+1))
and using (4), we finally obtain that the probability that precisely S
gunmen (on either side) will survive the shooting, provided there were

initially N on both sides, is given by

C
N−1

k=1

(−1)N−k−1Nk2N−S−2(k+S−1)!

(k−1)! (N+k)! (N−k−1)!
+ C
N−1

k=S

(−1)N−k−1Nk2N−S−2k!

(k−S)! (N+k)! (N−k−1)!
.

Unfortunately, since this is a sum with alternating signs, we are not able to

get more insight on this probability than already provided in Section 5. Just

for an illustration, we present the probability that exactly 5 gunmen will
survive provided there were initially 20 on both sides:

15310459783418263565672289100224561581887

283303917794408935536670579720873574400000
% 0.05404.

Solution to the OK Corral Model 275



This number is computed using the analytical expression for the probability

of survival of exactly S gunmen.
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In this note we acknowledge a mistake made in Section 6 of [1], for the exact probability

for the number of survivors in the OK Corral model, given near the bottom of page

275.

Here is the correct (and, in fact, simpler) computation. Let ν be the (random) number

of survivors on one of the sides, when the other side is exterminated. Observe that

P(ν ≤ S) = 2P

(

N
∑

k=S+1

kξk <

N
∑

k=1

kζk

)

= 2P(ηS > 0)

where the factor “2” comes from the fact that each side is equally likely to survive,

and

ηS =

N
∑

k=1

kζk −

N
∑

k=S+1

kξk .

For a λ sufficiently close to 0, we can compute the Laplace transform of ηS as

ϕηS
(λ) = E eληS =

N
∏

k=1

1

1 + λk
·

N
∏

k=σ+1

1

1 − λk
=

N
∑

k=1

ak

1 + λk
+

N
∑

k=σ+1

bk

1 − λk

The original article can be found online at https://doi.org/10.1023/A:1022294908268.
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where the constants

ak = ak(N , S) =
(−1)N−kk2N−S−1(k + S)!

(N − k)!(k − 1)!(N + k)!

are obtained using the partial fractions decomposition. Since we can invert the above

Laplace transform and obtain that the density of ηS is given by

fηS
(x) =

N
∑

k=1

ak

e−x/k

k
1{x>0} +

N
∑

k=σ+1

bk

ex/k

k
1{x<0},

we can compute

P(ν ≤ S) = 2P(ηS > 0) = 2

∫ ∞

0

fηS
(x)dx = 2

N
∑

k=1

ak(N , S).

Consequently, since P(ν = S) = P(ν ≤ S) − P(ν ≤ S − 1), we conclude that

P(ν = S) = 2

N
∑

k=1

[ak(N , S) − ak(N , S − 1)] = 2 S

N
∑

k=1

(−1)N−kk2N−S(k + S − 1)!

(N − k)! k! (N + k)!

for S = 1, 2, . . . , N .

Note that the formula at the bottom of page 275 for P(ν = 5) is actually correct.
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