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Abstract

Wasserstein distances are metrics on probability distributions inspired by
the problem of optimal mass transportation. Roughly speaking, they mea-
sure the minimal effort required to reconfigure the probability mass of one
distribution in order to recover the other distribution. They are ubiquitous
in mathematics, with a long history that has seen them catalyze core devel-
opments in analysis, optimization, and probability. Beyond their intrinsic
mathematical richness, they possess attractive features that make them a
versatile tool for the statistician: They can be used to derive weak conver-
gence and convergence of moments, and can be easily bounded; they are
well-adapted to quantify a natural notion of perturbation of a probability
distribution; and they seamlessly incorporate the geometry of the domain
of the distributions in question, thus being useful for contrasting complex
objects. Consequently, they frequently appear in the development of statis-
tical theory and inferential methodology, and they have recently become an
object of inference in themselves. In this review, we provide a snapshot of the
main concepts involved in Wasserstein distances and optimal transportation,
and a succinct overview of some of their many statistical aspects.
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1. INTRODUCTION

Wasserstein distances are metrics between probability distributions that are inspired by the prob-
lem of optimal transportation. These distances (and the optimal transport problem) are ubiquitous
in mathematics, most notably in fluid mechanics, partial differential equations, optimization, and,
of course, probability theory and statistics. In addition to their theoretical importance, they have
provided a successful framework for the comparison of (at times complex) objects in fields of appli-
cation such as image retrieval (Rubner et al. 2000), computer vision (Ni et al. 2009), pharmaceutical
statistics (Munk & Czado 1998), genomics (Bolstad et al. 2003, Evans & Matsen 2012), economics
(Gini 1914) and finance (Rachev et al. 2011), to name but a few. Indeed, while their origins lie with
Monge’s (primarily mathematical) inquiry into how to optimally transport a pile of earth of a given
volume into a pit of equal volume but potentially different shape, Kantorovich’s modern reformula-
tion, which catalyzed the development of this rich theory, was inspired by the concrete problem of
optimal resource allocation. Unsurprisingly, there is a vast literature on Wasserstein distances and
optimal transportation, originally rooted primarily in analysis and probability, but later branching
out to quantitative fields well beyond. In statistics, Wasserstein distances play a prominent role in
theory and methodology, and more recently have become an object of inference in themselves. In
his thousand-page book, Villani (2008, p. 2) writes that reviewing the optimal transport literature is
a “dauntingly difficult task,” and if one focuses more narrowly on statistical aspects of Wasserstein
distances, it is still impossible to carry out a comprehensive review in the order of twenty-five pages.
We thus restrict ourselves to a high level overview of some salient aspects and main concepts, admit-
tedly influenced by our own perspective and interests, and apologize for the inevitable omissions.

1.1. Overview

Wasserstein distances appear in statistics in several ways. We delineate three broad categories of
statistical use of these distances, according to which we will structure our review:

1. Wasserstein distances and the associated notion of an optimal coupling are often exploited
as a versatile tool in asymptotic theory due to the topological structure they induce and their
relatively easy majorization, and Section 2 reviews some of their appealing features in that
context.

2. In other cases, Wasserstein distances are employed as a methodological tool in order to carry
out statistical inference, primarily involving structural models and goodness-of-fit testing.
Section 3 describes key methods and results in this vein.

3. Finally, a recent trend in functional data analysis is to consider the space of probability
measures equipped with a Wasserstein distance as a sample/parameter space itself, a
direction that is taken up in Section 4.

In contexts such as 2 and 3, it is often important to carry out explicit computations related to
the Wasserstein distance, and Section 5 gives a brief overview of such numerical aspects. First, we
review the basic definitions and relevant notions that we require throughout the article.

1.2. Basic Notions

The p-Wasserstein distance1 between probability measures μ and ν on R
d is defined as

Wp (μ, ν) = inf
X ∼μ
Y ∼ ν

(E‖X − Y‖p )1/p , p ≥ 1, 1.

1This is also known as Mallows’ distance, the earth mover’s distance, the (Monge–)Kantorovich(–Rubinstein) distance, or the
Fréchet distance (when p = 2). The term “Wasserstein distance” became popular, mainly in Western literature, following
Dobrushin (1970), who studied some of its topological properties and referred to an earlier work by Wasserstein. Villani
(2008, p. 118) and Bobkov & Ledoux (2018, p. 4) provide more details.
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where the infimum is taken over all pairs of d-dimensional random vectors X and Y marginally
distributed as μ and ν, respectively (an obviously nonempty set, since one can always construct
independent random variables with prescribed marginals). For convenience, we use both notations
Wp (X , Y ) and Wp (μ, ν) interchangeably whenever X ∼ μ and Y ∼ ν. The distance is finite
provided the pth moments exist, E‖X‖p + E‖Y‖p < ∞, and this will be tacitly assumed in what
follows. The definition generalizes to laws defined on much more general spaces: If (X , ρ) is any
complete and separable metric space, Wp can be defined in the same way, with ‖X − Y‖ replaced
by the metric ρ(X , Y ). In particular, this setup incorporates laws on infinite-dimensional function
spaces such as L2[0, 1]. For simplicity, we restrict to the setting where X is a normed vector space,
employing the notation (X , ‖ · ‖) henceforth.

The optimization problem defining the distance is typically referred to in the literature as
optimal transport(ation) or the Monge–Kantorovich problem. When X and Y take values on the
real line, their joint distribution is characterized by specifying their marginal distributions and a
copula (Sklar 1959). Since the marginals here are fixed to be the laws of X and Y , the problem is
to find a copula that couples X and Y together as tightly as possible in an Lp -sense, on average; if
p = 2 then that copula is the one that maximizes the correlation (or covariance) between X and
Y , i.e., the copula inducing maximal linear dependence.

The Wasserstein distances Wp are proper distances in that they are nonnegative, are symmetric
in X and Y, and satisfy the triangle inequality. A compactness argument shows that the infimum
in their definition is indeed attained (if X is complete). When endowed with the distance Wp ,
the space of measures with finite pth moments—the Wasserstein space Wp (X )—is complete and
separable if X is so. Although many other metrics can be defined on the space of probability mea-
sures (Rachev 1991, Gibbs & Su 2002), Wasserstein distances exhibit some particularly attractive
features:

� They incorporate the geometry of the ground space X : If X and Y are degenerate at points
x, y ∈ X , then Wp (X , Y ) is equal to the distance between x and y in X . This property hints
at why Wasserstein distances are successful in imaging problems and why they can capture
the human perception of whether images are similar or not (see Section 4).

� Convergence of Xn to X in Wasserstein distance is equivalent to convergence in distribution,
supplemented with E‖Xn‖p → E‖X‖p . This makes Wp convenient for proving central limit
theorem–type results (see Section 2).

� Since they are defined as the solution of minimization problems, they are quite easy to bound
from above: Any joint distribution with the correct marginals provides an upper bound for the
Wasserstein distance (see Section 2). Moreover, they enjoy some differentiability, allowing
for application of the delta method (see Section 3).

In addition to the probabilistic definition (Equation 1), one can consider the analytic definition,
which helps dissect the structure of the Monge–Kantorovich optimization problem:

Wp (μ, ν) =
(

inf
γ∈�(μ,ν)

∫
X×X

‖x − y‖p dγ (x, y)
)1/p

. 2.

Here, �(μ, ν) is the set of probability measures γ on X × X satisfying γ (A × X ) = μ(A) and
γ (X × B) = ν(B) for all Borel subsets A, B ⊆ X . Elements γ ∈ �(μ, ν) are called couplings
of μ and ν, i.e., joint distributions on X × X with prescribed marginals μ and ν on each axis,
which hopefully elucidates the equivalence to the probabilistic definition given by Equation 1.
The analytical definition (Equation 2) has a simple intuitive interpretation in the discrete case:
Given a γ ∈ �(μ, ν) and any pair of locations (x, y), the value of γ (x, y) tells us what proportion
of μ’s mass at x ought to be transferred to y in order to reconfigure μ into ν. Quantifying the
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effort of moving a unit of mass from x to y by ‖x − y‖p yields the interpretation of Wp (μ, ν) as
the minimal effort required to reconfigure μ’s mass distribution into that of ν.

The analytical definition given by Equation 2 underlines that the feasible set � is convex and
that the objective function is (up to the power 1/p) linear in γ . Optimal γ s can thus be expected
to be extremal, that is, relatively sparse. Examples of such sparse couplings are deterministic ones,
i.e., couplings supported on the graph of some deterministic function T : X → X , rather than on
X × X , so that they can be realized as

γ (A × B) = μ(A ∩ T−1(B)).

Such a coupling reassigns all of μ’s mass at a given location to a unique destination. When the
vector (X , Y ) is distributed according to such a γ , its two coordinates are completely dependent:
Y = T(X ) for the deterministic function T : X → X . Such T is called an optimal transport map
and must satisfy ν(B) = μ(T−1(B)) for all B ⊆ X if γ is to be in �, i.e., T pushes μ forward to ν
(denoted by T#μ = ν). Figure 1 illustrates these definitions.

x

y

x

y

Figure 1
Illustration of the analytic and probabilistic definitions of the p-Wasserstein distance. The top row of plots shows the densities of two
Gaussian probability measures μ (left, blue) and ν (right, red ), and the optimal deterministic map T (middle, gray) that deforms μ into ν,
i.e., T#μ = ν. The map is plotted in the form of the vector field T(x) − x, where each arrow indicates the source and destination of the
mass being transported. Reversing the direction of the arrows would produce the inverse map, optimally deforming the measure ν to

obtain μ. The bottom row features two independent random samples X1, . . . , XN
i.i.d.∼ μ (left, blue) and Y1, . . . , YN

i.i.d.∼ ν (right, red ), for
N = 120. The sample {Xi }N

i=1 was constructed by sampling μ directly. The sample {Yi }N
i=1 was constructed by applying the optimal map

T to the sample {Xi }N
i=1, i.e., Yi = T(Xi ). The plot in the middle illustrates how the sample {Xi }N

i=1 is rearranged in order to produce the
sample {Yi }N

i=1, by plotting the vectors T(Xi ) − Xi . The optimality of T can be understood in terms of minimizing the average squared
length of these arrows. In all plots, the x and y axes range from −3 to 3. Abbreviation: i.i.d., independent and identically distributed.
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As it turns out, under sufficient regularity, such deterministic couplings are optimal. When
X = R

d is finite-dimensional and μ is absolutely continuous with respect to Lebesgue measure,
the infimum (if finite) is attained (uniquely if p > 1) by such a deterministic coupling. In this case
we denote the map T inducing the coupling by tY

X or tνμ. In the next paragraph we briefly sketch
the arguments leading to this result. As the problem is analytical in nature, characterizing the
solutions requires some tools from mathematical analysis. We have attempted to avoid technical-
ities to the extent possible, but with optimal transport, the devil is in the details, as the problem
is qualitatively different depending on whether the random variables are discrete or continuous.
The less mathematically inclined reader can skip to the paragraph containing Equation 3, simply
retaining the loose statement that in the quadratic case p = 2, optimal maps are characterized as
gradients of convex functions. Our presentation mainly follows Villani (2003); more references
are given at the end of this section.

1.2.1. Uniqueness and characterization. Like any convex optimization problem, the Monge–
Kantorovich problem admits a Lagrangian dual problem, consideration of which leads to a char-
acterization of optimal maps. The dual problem can be seen as

sup
φ,ψ

{
Eφ(X ) + Eψ(Y )

}
, subject to φ(x) + ψ(y) ≤ ‖x − y‖p

for integrable φ andψ . The inequality Eφ(X )+Eψ(Y ) ≤ E‖X −Y‖p implies weak duality, in that
the above supremum is no larger than the infimum in Definition 1. But under mild conditions there
is strong duality, and there exist a pair (φ,ψ) and a joint coupling γ such that Eφ(X ) + Eψ(Y ) =
Eγ ‖X − Y‖p . Furthermore, a version of complementary slackness holds between the two optimal
solutions in such a way that one provides much information on the other. This is best demonstrated
in the quadratic case p = 2, by virtue of the factorization ‖x−y‖2 = ‖x‖2+‖y‖2−2 〈x, y〉. Algebraic
manipulations then allow the dual to be recast as

inf
ϕ,	

{
Eϕ(X ) + E	(Y )

}
, subject to ϕ(x) +	(y) ≥ 〈x, y〉 .

A simple yet consequential observation is that for a givenϕ, the best candidate for	 is the Legendre
transform of ϕ,

ϕ∗(y) = sup
x∈X

{〈x, y〉 − ϕ(x)},

the smallest function satisfying ϕ∗(y) + ϕ(x) ≥ 〈x, y〉. Iterating this idea amounts to replacing ϕ
by ϕ∗∗ = (ϕ∗)∗, which is larger than ϕ yet still obeys the constraint ϕ∗∗(x) + ϕ∗(y) ≥ 〈x, y〉. The
choice 	 = ϕ∗ makes the dual unconstrained, and ϕ is optimal if and only if ϕ(x) + ϕ∗(y) = 〈x, y〉
with probability one with respect to X and Y . Going back to the primal problem, we see that once
an optimal ϕ is found, a joint distribution will be optimal if and only if it assigns unit probability
to the event ϕ(X ) + ϕ∗(Y ) = 〈X , Y 〉. Furthermore, ϕ itself may be assumed to be the Legendre
transform of ϕ∗, namely ϕ = ϕ∗∗.

At this stage one can invoke the rich theory of convex analysis. Legendre transforms are always
convex, and the equality ϕ(x) + ϕ∗(y) = 〈x, y〉 holds if and only if y is a subgradient of ϕ at x. If ϕ
has a unique subgradient y at x, then y = ∇ϕ(x) is the gradient of ϕ and is determined uniquely.
The regularity of convex functions implies that this is the case for all x up to a set of Lebesgue
measure 0. Thus, if X has a density, then the optimal map T is characterized as the unique gradient
of a convex function that pushes X forward to Y . On the other hand, if X is discrete, then it might
be concentrated on the small set where ϕ is not differentiable, in which case the optimal coupling
will not be induced from a map.
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Similar arguments apply for other values of p > 1. For a given φ, the best candidate for ψ is
the c-transform2 of φ,

φc(y) = inf
x∈X

{‖x − y‖p − φ(x)},

which again leads to an unconstrained dual problem supφ Eφ(X ) + φc(Y ). A function φ is optimal
if and only if φ(x) + φc(y) = ‖x − y‖p with probability one, and φ itself can be assumed to be a
c-transform. In analogy with the quadratic case, the equality φ(x) + φc(y) = ‖x − y‖p entails a
relation between y and the gradient of φ, and c-transforms enjoy differentiability properties similar
to those of convex functions.

In summary, when X has a density, optimal maps tY
X are precisely functions of the form

tY
X (x) =

{
∇ϕ(x) for some convex ϕ, p = 2,
x − ‖∇φ(x)‖1/(p−1)−1∇φ(x) for some c-transform φ, p �= 2.

3.

This formula for general p is also valid if p = 2, with φ(x) = ‖x‖2/2 − ϕ(x). Importantly, this
uniqueness and characterization result holds for two classes of spacesX extending R

d : Riemannian
manifolds and separable Hilbert spaces.

1.2.2. Regularity. The convex gradient characterization gives rise to a rich regularity theory in
the quadratic case. When both μ and ν have densities f and g, the convex potential ϕ solves the
Monge–Ampère equation,

det∇2ϕ(x) = f (x)
g(∇ϕ(x))

.

The regularity theory of Monge–Ampère equations allows one to deduce the smoothness of the
optimal map T = ∇ϕ. Roughly speaking, if X and Y have convex supports and positive, bounded
densities with derivatives up to order k ≥ 0, then the optimal map tνμ has continuous derivatives
up to order k + 1.

1.2.3. Explicit solutions. Apart from the characterization of optimal maps T as gradients of con-
vex functions (when p = 2) or c-transforms, typically neither T nor the Wasserstein distance Wp

admit closed-form expressions. There are two special yet important cases with explicit formulae.
When d = 1, denoting FX and F−1

X (q ) = inf{x : FX (x) ≥ q }, q ∈ (0, 1), the distribution and
quantile functions of X , we have

Wp (X , Y ) = ‖F−1
X − F−1

Y ‖p =
(∫ 1

0
|F−1

X (α) − F−1
Y (α)|p dα

)1/p

, tY
X = F−1

Y ◦ FX ,

where tY
X is optimal if X is a continuous random variable. This allows the quantile function F−1

Y

of any random variable Y to be interpreted as the optimal map from a uniform random variable
to Y (also see Section 6 for an interesting interpretation/extension of this fact). In the special case
p = 1, there is an alternative, often more convenient, formula:

W1(X , Y ) =
∫

R

|FX (t) − FY (t)| dt.

2Here, the cost of transferring a unit of mass from x to y is c(x, y) = ‖x − y‖p , but these ideas are valid for more general cost
functions c, hence the name.
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The function tY
X = F−1

Y ◦ FX is still optimal but might not be unique. One can also bound Wp in
terms of the distribution functions:

W p
p (X , Y ) ≤ p2p−1

∫
R

|t|p−1|FX (t) − FY (t)| dt.

The other case where closed-form formulae are available is when X and Y are Gaussian. If
X ∼ N (m1,�1) and Y ∼ N (m2,�2), then

W 2
2 (X , Y ) = ‖m1 − m2‖2 + tr[�1 +�2 − 2(�1/2

1 �2�
1/2
1 )1/2],

tY
X (x) = m2 +�

−1/2
1 [�1/2

1 �2�
1/2
1 ]1/2�

−1/2
1 (x − m1), 4.

where tY
X is defined if �1 is injective (more generally, if its kernel is included in that of �2). These

formulae are valid in infinite dimensions too, in which case tY
X may be unbounded, and only defined

on an affine subspace of X . Furthermore, this result holds in location-scale families that are not
necessarily Gaussian.

1.3. Bibliographic Notes

In addition to the survey of Rachev (1985), there are a number of books dedicated to optimal
transport: Rachev & Rüschendorf (1998a,b), Villani (2003, 2008), Ambrosio & Gigli (2013),
Santambrogio (2015), and the forthcoming Panaretos & Zemel (2019), leaning to the statistical
side of the subject. The reader interested in the extensive bibliography may consult in particular
the first, second and fourth of these references. For space considerations, we only give a very brief
historical overview and a summary list of references.

The origin of the optimal transport problem is the monograph by Monge (1781), in which he
posed the question for the particular case X = R

3 and p = 1; Appell (1886) also provides an early
reference. The probabilistic formulation of Kantorovich (1942) was a major breakthrough and one
of the catalysts that led Kantorovich to develop linear programming, for which he was awarded
the Nobel prize in 1975 (jointly with T.C. Koopman, who independently arrived at similar results
after Kantorovich).

Duality results have a rich history dating back at least to Kantorovich & Rubinstein (1958).
Very general results (for all Borel cost functions) in this context can be found in Beiglböck &
Schachermayer (2011). Kellerer (1984) explores duality in a multimarginal formulation involving
more than two measures (see also Section 4).

The one-dimensional case is intrinsically related to the Fréchet–Höffding bounds (Höffding
1940, Fréchet 1951). Readers are directed to Bass (1955) and Dall’Aglio (1956) for early references
and to Cuesta-Albertos et al. (1993) for detailed discussion when p = 2. The bound for Wp in
terms of distribution functions is due to Ebralidze (1971) and can be found in generalized form in
Bobkov & Ledoux (2018, section 7.4). There are analogous results for measures on spaces with
simple structure; see Delon et al. (2010) for the unit circle and Kloeckner (2015) for ultrametric
spaces.

For the Gaussian case, readers are directed to Olkin & Pukelsheim (1982) or Givens & Shortt
(1984) in finite dimensions, and Gelbrich (1990) and Cuesta-Albertos et al. (1996) for an infinite-
dimensional extension.

The convex gradient characterization in the quadratic case was discovered independently by
a number of authors: Knott & Smith (1984), Cuesta-Albertos & Matrán (1989), Rüschendorf &
Rachev (1990), and Brenier (1991). For other values of the exponent p (and more general cost
functions), see Gangbo & McCann (1996). The Riemannian version is due to McCann (2001),
and Ambrosio et al. (2008, section 6.2.2) treat the infinite-dimensional case.
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The regularity result was discovered by Caffarelli (1992); Figalli (2017) provides an accessible
exposition. There are other (e.g., Sobolev) types of regularity results, as explained by Villani (2008,
pp. 332–36) or Santambrogio (2015, section 1.7.6).

2. OPTIMAL TRANSPORT AS A TECHNICAL TOOL

This section reviews some of the features of Wasserstein metrics that make them useful as a
technical tool for deriving large sample theory results in statistics. To facilitate the presentation,
we first state some simple facts that play a role in the development. Let X and Y be random vectors
taking values in X = R

d ; we maintain the notation (X , ‖ · ‖) to stress that the properties are valid
in infinite dimensions as well.

� For any real number a , Wp (aX , aY ) = |a|Wp (X , Y ).
� For any fixed vector x ∈ X , Wp (X + x, Y + x) = Wp (X , Y ).
� If E(X ) = E(Y ), then for any fixed x ∈ X , W 2

2 (X + x, Y ) = ‖x‖2 + W 2
2 (X , Y ).

� For product measures and when p = 2, we have W 2
2 (⊗n

i=1μi , ⊗n
i=1νi ) = ∑n

i=1 W 2
2 (μi , νi ) in

the analytic notation.

The proofs of the first three statements rely on the equivalence between the classes of the corre-
sponding couplings. For example, U = (X + x,Y + x) is a coupling of X +x and Y + y if and only if
U−(x, x) is a coupling of (X , Y ). For the last property, observe that the map x �→ [tν1

μ1
(x), . . . , tν1

μ1
(x)]

is a gradient of a convex function and pushes forward ⊗μi to ⊗νi .

2.1. Deviations from Gaussianity

If {Xi }i≥1 are independent and identically distributed random variables with mean zero and finite
variance, then the central limit theorem asserts that the suitably rescaled averages Sn = n1/2 X n

converge in distribution to a normal random variable Z with the same variance. Since ES2
n = EZ2,

the convergence also holds in 2-Wasserstein distance. This property makes the 2-Wasserstein
distance convenient for handling deviations from Gaussianity. The arguments generally involve
the subadditivity of the Wasserstein distance with respect to convolutions, a property that can
be established using the infimum-over-couplings definition of the Wasserstein distances. For
example, assuming EXi = 0,

W 2
2

(
n∑

i=1

ai Xi , Z

)
≤

n∑
i=1

a2
i W 2

2 (Xi , Z), Z ∼ N (0, 1),
n∑

i=1

a2
i = 1. 5.

To see this, let Zi ∼ N (0, 1) be independent and consider optimal couplings on R
2 such that

E|ai Xi − ai Zi | = W 2
2 (ai Xi , ai Zi ). Take the product π of all these couplings (a joint distribution

on R
2n). Then, under π ,

∑
ai Zi is standard normal and

W 2
2

(
n∑

i=1

ai Xi , Z

)
≤ Eπ

∣∣∣∣∣
n∑

i=1

ai Xi −
n∑

i=1

ai Zi

∣∣∣∣∣
2

=
n∑

i=1

E |ai Xi − ai Zi |2 =
n∑

i=1

W 2
2 (ai Xi , ai Z),

from which Equation 5 follows. Mallows (1972) used this property in order to derive necessary
and sufficient conditions for a triangular array to be jointly asymptotically normal. Recall that
Xn = (Xn1, . . . , Xnd) converge in distribution to a standard multivariate N (0, Id ) if and only if
atXn → Z for all a ∈ R

d , ‖a‖ = 1. Now let Xnj ( j ≤ n < ∞) be a triangular array. In analogy
with a fixed dimension, we say that (Xnj ) is jointly asymptotically normal if at

nXn → Z for any
sequence of vectors an ∈ R

n, ‖an‖ = 1. This requires Xnj to converge to Z uniformly in j , i.e.,
Xnmn → Z for any sequence of coordinates mn ≤ n. This condition is not sufficient, however.
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Mallows (1972) observed that metrics inducing convergence in distribution are not subadditive,
and this is remedied by the Wasserstein distance. If EX 2

nj → 1 uniformly in j , in addition to the
uniform convergence in distribution, then W 2

2 (Xnj , Z) → 0, and as a consequence of Equation 5,
W 2

2 (at
nXn, Z) → 0, and the array is jointly asymptotically normal. The length of the nth row of

the array can be arbitrary, as long as it diverges to infinity with n.
When the Xi s in Equation 5 have the same distribution as X and ai = 1/

√
n, the inequality

gives a bound that is uniform in n. Bickel & Freedman (1981) use this result in their study of
the asymptotics of the bootstrap. For instance, denote by Fn the empirical distribution function
corresponding to a sample X1, . . . , Xn and the sample mean by μn = X . Let X ∗

1 , . . . , X ∗
m be

a bootstrapped sample from Fn with sample average μ∗
m. Then as n, m → ∞, the conditional

[upon (Xi )] distribution of
√

m(μ∗
m −μn) converges to N (0, var(X1)), which is the same asymptotic

distribution of μn.
Another additive property, shown in a similar way to Equation 5, is

Wp

(
n∑

i=1

Ui ,
n∑

i=1

Vi

)
≤

n∑
i=1

Wp (Ui , Vi ),

for independent (Ui ) and (Vi ). A particular case is that Wp (X + Y , X ) ≤ Wp (Y, 0) = [E‖Y‖p ]1/p ,
and taking Y to be Gaussian with small variance allows one to approximate in Wp any probability
law with a smooth surrogate law to arbitrary precision. In other words, smooth measures are dense
in Wp , just as they are dense with respect to convergence in distribution. Discrete measures are
also dense (see Section 3.3).

Actually, the subadditivity properties can be used in order to prove the central limit theorem.
Tanaka (1973) does so by noticing that equality in Equation 5 holds only for Gaussian distributions.
Johnson & Samworth (2005) obtain rates of convergence for the central limit theorem, and more
generally, for convergence to stable laws. Berry–Esseen-type bounds for the Wasserstein distance
can be found in Rio (2009). For random elements in Banach spaces, readers are directed to Rachev
& Rüschendorf (1994).

2.2. Equilibrium, Concentration, and Poisson Approximations

A different class of settings where Wasserstein distances are used is in the study of convergence
of Markov chains to their equilibrium distribution; this usage dates back to Dobrushin (1970).
The idea is to show a sort of contraction property of the transition kernel with respect to the
Wasserstein distance. Let P be the transition matrix. In studying convergence of the Kac random
walk on the orthogonal group SO(n), Oliveira (2009) showed that

WD,2(μP , νP ) ≤ ξWD,2(μ, ν)

for some ξ < 1, where D is a distance between matrices, leading to exponential convergence to
equilibrium. A result of similar spirit was derived by Eberle (2014) for the transition kernel of the
Metropolis-adjusted Langevin algorithm, a Markov chain Monte Carlo method. The constant ξ
above is related to the Wasserstein spectral gap of the transition kernel. Hairer et al. (2014) explored
its behavior in infinite-dimensional state spaces, when taking finite-dimensional projections of P .
They showed that for the preconditioned Crank–Nicolson algorithm, ξ remains stable, whereas
for the random walk Metropolis algorithm, ξ may converge to one. Rudolf & Schweizer (2018)
employ Wasserstein distances to bound the difference between the behavior of some nicely behaved
Markov chain and a perturbed version thereof, obtained from a modification in the transition
kernel.
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Wasserstein distances also appear in concentration of measure, in the form of transportation
inequalities (Ledoux 2005, chapter 6). A measure μ0 satisfies such an inequality if, for any other
measure ν,

W1(μ0, ν) ≤ C
√

H(μ0, ν), H(μ, ν) =
∫

log
dμ
dν

dμ.

If this holds, and μ(A) ≥ 1/2, then

P(X /∈ Ar ) ≤ e−r2/C′
, Ar = {x : ‖x − A‖ ≤ r}.

Furthermore, the representation of W1 as the supremum over Lipschitz functions (see the next
subsection) yields concentration inequalities for f (X ) − E f (X ) with f Lipschitz.

In a different context, Barbour & Brown (1992) use Wasserstein metrics to quantify the error
in approximating a point process � by a Poisson point process P with the same mean measure
λ. Suppose for simplicity that the sample space is [0, 1], and for two (not necessarily probability)
measures μ̃, ν̃ with total masses A and B, define the probabilitiesμ = μ̃/A, ν = ν̃/B and d (μ̃, ν̃) =
W1(μ, ν) if A = B and 1 (the maximal value) if A �= B. The processes� and P can then be viewed
as random elements in the metric space X of measures with the distance d , and their laws can be
compared using the upper degree Wasserstein space W1 on (X , d ). Schuhmacher (2009) provides
an extension where d is replaced by a Wasserstein distance of different order Wp .

2.3. Relation to Other Metrics

We conclude this section by reviewing some useful relations between Wp and other probability
metrics. We first relate Wp to Wq by two simple results from Villani (2003, chapter 7), and then
describe bounds (mostly borrowed from Gibbs & Su 2002) pertaining to W1 and the Prokhorov,
total variation, and bounded Lipschitz distances. For notational simplicity we state the bounds in
the Euclidean setting, but they hold on any complete separable metric space (X , ρ). For random
variables X and Y on X , let � be the union of their ranges and set

D = sup
x,y∈�

‖x − y‖, dmin = inf
x �=y∈�

‖x − y‖.

In the analytic version � = supp(μ) ∪ supp(ν), where X ∼ μ, Y ∼ ν, and supp stands for support.
If X and Y are bounded, then D is finite; if X and Y are (finitely) discrete, then dmin > 0.

� If p ≤ q , then Wp ≤ Wq , by Jensen’s inequality.
� A reverse version also holds, W q

q ≤ Wp
p Dq−p .

� Duality arguments yield the particularly useful Kantorovich–Rubinstein (Kantorovich &
Rubinstein 1958) representation for W1 as

W1(X , Y ) = sup
‖ f ‖Lip≤1

|E f (X ) − E f (Y )|, ‖ f ‖Lip = sup
x �=y

| f (x) − f (y)|
‖x − y‖ ,

valid on any separable metric space (Dudley 2002, section 11.8).
� This shows that W1 is larger than the bounded Lipschitz (BL) metric

W1(X , Y ) ≥ BL(X , Y ) = sup
‖ f ‖∞+‖ f ‖Lip≤1

|E f (X ) − E f (Y )|

that metrizes convergence in distribution (Dudley 2002, theorem 11.3.3).
� Let P denote the Prokhorov distance. Then P2(X , Y ) ≤ W1(X , Y ) ≤ (D + 1)P (X , Y ).
� For the class of random variables supported on a fixed bounded subset K ⊆ X , BL and W1

are equivalent up to constant, and all metrics Wp are topologically equivalent.
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� The Wasserstein distances Wp can be bounded by a version of total variation TV (Villani
2008, theorem 6.15). A weaker but more explicit bound for p = 1 is W1(X , Y ) ≤ D ×
TV(X , Y ).

� For discrete random variables, there is an opposite bound TV ≤ W1/dmin.
� The total variation between convolutions with a sufficiently smooth measure is bounded

above by W1 (Mariucci & Reiß 2017, proposition 4).
� The Toscani (or Toscani–Fourier) distance is also bounded above by W1 (Mariucci & Reiß

2017, proposition 2).

Beyond bounded random variables, Wp , Wq , BL, and TV induce different topologies, so that one
cannot bound, for example, W1 in terms of BL in the unbounded case. On a more theoretical
note, we mention that the Kantorovich–Rubinstein formula yields an embedding of any Polish
space (X , ρ) in the Banach space of finite signed measures on X .

3. OPTIMAL TRANSPORT AS A TOOL FOR INFERENCE

As a measure of distance between probability laws, the Wasserstein distance can be used for
carrying out of goodness-of-fit tests, and indeed, this has been its main use as a tool for statistical
inference. In the simplest one-sample setup, we are given a sample X1, . . . , Xn with unknown lawμ
and wish to test whetherμ equals some known fixed lawμ0 (e.g., standard normal or uniform). The
empirical measure μn associated with the sample (X1, . . . , Xn) is the (random) discrete measure
that assigns mass 1/n to each observation Xi . In this sense, the strong law of large numbers holds
in Wasserstein space: With probability one, Wp (μn,μ) → 0 as n → ∞ if and only if E‖X‖p < ∞.
It is consequently appealing to use Wp (μn,μ0) as a test statistic. In the two-sample setup, one
independently observes a sample Y1, . . . , Ym ∼ ν with corresponding empirical measure νm, and
Wp (μn, νm) is a sensible test statistic for the null hypothesis μ = ν.

3.1. Univariate Measures

We identify measures μ on the real line (X = R), with their distribution function F ; the empirical
distribution function corresponding to μn is Fn(t) = n−1 ∑n

i=1 1{Xi ≤ t}. Thus, Xi ∼ F , Y j ∼ G,
and we slightly abuse notation by writing Wp (F , G) for Wp (μ, ν).

Munk & Czado (1998) derive the asymptotic distribution of W2(Fn, F0) (and trimmed versions
thereof). The main tool for the derivation is a Brownian bridge representation for the quantile
process qn = √

n(F−1
n − F−1) that holds under suitable assumptions on F . There are four types

of limiting results, depending on the combination null/alternative and one/two-sample. Roughly
speaking, the limits are of order

√
n and normal under the alternative, and of order n and not

normal under the null. The two-sample asymptotics entail that m/n converges to a finite positive
constant. In symbols,

√
n[W 2

2 (Fn, F0) − W 2
2 (F , F0)] → normal (F �= F0),

nW 2
2 (Fn, F0) → something (F = F0),√

mn
m + n

[W 2
2 (Fn, Gm) − W 2

2 (F , G)] → normal (F �= G), and

mn
m + n

W 2
2 (Fn, Gm) → something (F = G). 6.

Similar results were obtained independently in del Barrio et al. (2000), where one can also find a
nice survey of other goodness-of-fit tests.
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If one instead wants to test whether F belongs to a parametric family F of distributions, then
the test statistic is the infimum of the Wasserstein distance between the empirical measure and
members of F . For example, in order to test the fit to some normal distribution, del Barrio et al.
(1999a) find the asymptotic distribution of the test statistic

Rn = infμ,σ 2 W 2
2 [Fn, N (μ, σ 2)]

S2
n

, S2
n = 1

n

n∑
i=1

(Xi − X )2,

an infinite sum of rescaled and centered χ2 random variables (under the null hypothesis). Using
a weighted version of the Wasserstein distance, de Wet (2002) constructs a test for location or
scale families. Here, the null hypothesis is that F = F0(· − θ ) or F = F0(·/θ ) for some known
distribution F0 and F and unknown θ ∈ R [or (0, ∞)]. In a more general setup, Freitag & Munk
(2005) consider the case of a structural relationship between F and F0 in the form

F−1(t) = φ1(F−1
0 (φ2(t, θ )), θ ),

for some (known) functions φ1,φ2 : R × � → R and parameters θ ∈ �. This setup includes the
location-scale model when φ2(t, θ ) = t and φ1(t, θ1, θ2) = (t−θ1)/θ2, and the Lehmann alternatives
model when φ2(t, θ ) = 1 − (1 − t)θ and φ1(t, θ ) = t. Motivated by population bioequivalence
problems, Freitag et al. (2007) treat the dependent two-sample case, where one observes a sample
(Xi , Yi )n

i=1 and wishes to compare the Wasserstein distance between the marginals.
Some of the required regularity is apparent from the following observation. The empirical

process
√

n(Fn − F ) converges to B ◦F , where B is a Brownian bridge on [0, 1], without assumptions
on F (this result is known as Donsker’s theorem). But the quantile process qn involves inversion,
and the limiting distribution is B(t)/F ′(F−1(t)), which requires assumptions on F . Csörgő &
Horváth (1993) provide a detailed study of the quantile process and asymptotics of functionals
thereof. In the context of Wasserstein distance, del Barrio et al. (2005) study the limiting behavior
of the norm ‖qn‖2

2,w = ∫ 1
0 q 2

n (t)w(t) dt, for an integrable weight functionw on (0, 1). The covariance
function of the process B/F ′◦ F−1 is

η(s, t) = min(s, t) − st
F ′(F−1(t))F ′(F−1(s))

, s, t ∈ (0, 1),

and the limits are qualitatively different depending on whether the integrals
∫ 1

0 η(t, t)w(t) dt and/or∫ 1
0

∫ 1
0 η

2(t, s)w(t)w(s) dt ds are finite or not.

3.2. Multivariate Measures

Results in the multivariate setup are more scarce. One apparent reason for this is that the Wasser-
stein space of measures with multidimensional support is no longer embeddable in the function
space Lp (0, 1) via quantile functions, and has positive curvature (see Section 4). As perhaps can be
expected, multivariate distributional results for the empirical p-Wasserstein distance are chiefly
available when it admits a closed form; that is, when p = 2 and we consider Gaussian distributions.
Assume that μ = N (m1,�1). Given a sample X1, . . . , Xn from μ, let μ̂n be the empirical Gaussian
measure

μ̂n = N (m̂, �̂), m̂ = X = 1
n

n∑
i=1

Xi , �̂ = 1
n − 1

n∑
i=1

(Xi − X )(Xi − X )t .

The test statistic is now W 2
2 (μ̂n,μ0) for one sample and W 2

2 (μ̂n, ν̂m) for two samples, and the
analog of the four cases in Equation 6 holds true. The underlying idea is to combine the classical
central limit theorem for m̂ and �̂ with a delta method, and Rippl et al. (2016) establish the
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necessary differentiability of the squared Wasserstein distance in the Gaussian setup in order to
apply the delta method. Importantly, Gaussianity can be replaced with any location-scatter family
of d-dimensional distribution functions

{F (x) = F0(m +�1/2x) : m ∈ R
d ;� ∈ R

d×d positive definite},

where F0 is an arbitrary distribution function with finite nonsingular covariance matrix.
For sufficiently smooth measures μ, ν (with moment conditions), del Barrio & Loubes (2018)

find the normal limit of
√

n[W 2
2 (μn, ν) − EW 2

2 (μn, ν)].

They establish stability of the convex potential with respect to perturbations of the measures and
invoke the Efron–Stein inequality. Again in analogy with Equation 6, the limiting distribution
is degenerate at 0 if μ = ν. This central limit theorem does not, however, yield a limit for
W 2

2 (μn, ν)−W 2
2 (μ, ν), since the speed at which EW 2

2 (μn,μ) decays to zero [and consequently that
of EW 2

2 (μn, ν) − W 2
2 (μ, ν)] depends on μ in a rather delicate way and can be arbitrarily slow (see

Section 3.3).
When μ and ν are finitely supported measures, they can be identified with vectors r in the

unit simplex, and the empirical vector rn obeys a central limit theorem. Sommerfeld & Munk
(2018) apply a delta method to obtain the limiting distributions of the Wasserstein distance. The
latter is only directionally Hadamard differentiable, leading to a nonstandard delta method with
nonlinear derivative. Correspondingly, the limiting distributions are not Gaussian, in general. In
analogy with Equation 6, they show that n1/2(Wp (rn, s) − Wp (r , s)) has a distributional limit under
the alternative, whereas under the null, the rate is n1/(2p) in agreement with results in Section 3.3.
Sommerfeld & Munk (2018) highlight the implications of the nonstandard delta method for the
bootstrap, whose consistency requires subsampling.

These results extend to countably supported measures, where one needs to impose an extra
summability condition on r in order to ensure convergence of

√
n(rn − r) to the Gaussian limit G

(Tameling et al. 2017). The limiting distributions have a more explicit form when the underlying
space has the metric structure of a tree. Bigot et al. (2017a) establish similar limits for a regularized
version (see Section 5) of the Wasserstein distance.

Wasserstein distances have recently been proposed by Bernton et al. (2017) for parameter
inference in approximate Bayesian computation (also known as plug-and-play methods). The setup
is that one observes data on X and wishes to estimate the underlying distribution μ belonging
to a parametrized set of distributions {μθ }θ∈RN . However, the densities of these measures are
too complicated to evaluate/optimize a likelihood. Instead one can only simulate from them and
retain parameters that yield synthetic data resembling the observed data. A core issue here is how
to contrast the true and simulated data, and Bernton et al. (2017) suggest using Wp to carry out
such comparisons.

A Wasserstein metric has also been employed to compare persistence diagrams, a fundamen-
tal tool in topological data analysis (see Wasserman 2018 for a recent review) summarizing the
persistent homology properties of a data set. Readers are directed to, for example, Mileyko et al.
(2011), who introduce a version of the Wasserstein distance on the space of persistence diagrams,
endowing it with a metric structure that allows statistical inference.

3.3. Bounds for the Expected Empirical Wasserstein Distance

As discussed in the previous subsections, the speed of convergence of the empirical measure μn to
μ in Wasserstein distance Wp is important for statistical inference. This topic has a history dating
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back to the seminal work of Dudley (1969) and a very rich literature. For space considerations,
we will focus on the average value EWp (μn,μ), but see the bibliographical notes (Section 3.3.1)
for concentration inequalities and almost sure results. Upper bounds for the one-sample version
are also valid for the two-sample version since EWp (μn, νn) ≤ 2EWp (μn,μ) when νn is another
empirical measure. For brevity we write Wp for Wp (μn,μ), and inequalities such as EWp ≥ Cn−1/2

hold for given p , some C = C(μ), and all n. We also tacitly assume that μ ∈ Wp , i.e., it has a finite
pth moment, when writing Wp .

The behavior of EWp (μn,μ) is qualitatively different depending on whether the underlying
dimension d > 2p or d < 2p . For discrete measures, EWp is generally of the order n−1/(2p),
independently of the dimension. In high dimensions this is better than absolutely continuous
measures, for which the rate is n−1/d , but when d = 1, some smooth measures attain the optimal
rate n−1/2, faster than n−1/(2p). We first note that it is quite easy to see that Wp → 0 almost surely.
However, even for p = 1 = d , the decay of EWp can be arbitrarily slow (see Bobkov & Ledoux
2018, theorem 3.3).

Lower bounds are easier to obtain, and here are some examples:

� Fundamental
√

n bound: If μ is nondegenerate, then EWp ≥ Cn−1/2.
� Separated support: If μ(A) > 0, μ(B) > 0, μ(A ∪ B) = 1 and dist(A, B) = inf x∈A,y∈B ‖x −

y‖ > 0, then EWp ≥ Cp n−1/(2p). Any finitely discrete nondegenerate measure satisfies this
condition, as well as most countably discrete ones. This agrees with the rates of Sommerfeld
& Munk (2018 ) above.

� Curse of dimensionality: If μ is absolutely continuous on R
d , then EWp ≥ Cn−1/d . (This

result is void of content when d ≤ 2 in view of the n−1/2 bound.) More generally, μ only
needs to have an absolutely continuous part (e.g., a mixture of a Gaussian with a discrete
measure), and the bound holds whenμn is replaced with any measure supported on n points.
Equivalently, it holds for the quantizer of μ, the n-point measure that is Wp -closest to μ.

We briefly comment on how these bounds are obtained. The
√

n bound is a corollary of the central
limit theorem on f (X ), where X ∼ μ and f is a suitable Lipschitz function. If μ has separated
support and k ∼ B(n,μ(A)) is the number of points in μn falling in A, then a mass of |k/n −μ(A)|
must travel at least dist(A, B) > 0 units of distance, yielding a lower bound on the Wasserstein
distance. One then invokes the central limit theorem for k. For the curse of dimensionality, note
that the number of balls of radius ε needed to cover the support of μ is proportional to ε−d . If we
take ε = K n−1/d with an appropriate K > 0, then n balls of radius ε centered at the points of the
empirical measure miss mass τ from μ, and this mass has to travel at least ε, so Wp

p ≥ C ′τn−p/d .
The last lower bound was derived by counting the number of balls needed in order to cover μ,

which turns out to be a determining quantity for the upper bounds, too. To account for unbounded
supports, we need to allow covering only a (large) fraction of the mass. Let

N (μ, ε, τ ) = minimal number of ε-balls whose union has μ measure at least 1 − τ.

These covering numbers increase as ε and τ approach zero and are finite for all ε, τ > 0. To
put the next upper bound in context, we remark that any compactly supported μ on R

d satisfies
N (μ, ε, 0) ≤ K ε−d .

� If for some d > 2p , N (μ, ε, εd p/(d−2p)) ≤ ε−d , then EWp ≤ Cp n−1/d .

This covering number condition is verified if μ has finite moment of order large enough (Dudley
1969, proposition 3.4).

The exact formulae on the real line lead to a characterization of the measures attaining the
optimal n−1/2 rate:
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� If μ ∈ Wp (R) has compact support, then EW1 ≤ Cn−1/2, and consequently EWp ≤
Cp n−1/(2p).

� A necessary and sufficient condition for EW1 ≤ Cn−1/2 is that

J1(μ) = J1(F ) =
∫

R

√
F (t)(1 − F (t)) dt < ∞.

� The same holds for EWp , with the integrand in J1 replaced by [F (t)(1 − F (t))]p/2/[ f (t)]p−1,
where f is the density of the absolutely continuous part of μ.

Using the representation of W1 as the integral of |Fn − F |, one sees that J1 < ∞ suffices for the
n−1/2 rate, since the integrand has variance n−1 F (t)(1 − F (t)). The condition J1 < ∞ is essentially
a moment condition, as it implies EX 2 < ∞ and is a consequence of EX 2+δ for some δ > 0. But
for p > 1, Jp < ∞ entails some smoothness of μ. In particular, the above lower bounds show
that μmust be supported on a (possibly unbounded) interval, and the Jp condition means that the
density should not vanish too quickly in the interior of the support.

3.3.1. Bibliographic notes. The lower bounds were adapted from Dudley (1969), Fournier &
Guillin (2015), and Weed & Bach (2018).

The upper bound with the coverings dates back to Dudley (1969), who showed it for p = 1
and with the bounded Lipschitz metric. The version given here can be found in Weed & Bach
(2018) and extends Boissard & Le Gouic (2014). We emphasize that their results are not restricted
to Euclidean spaces. For Gaussian measures in a Banach space, Boissard & Le Gouic (2014) relate
EW2 to small ball probabilities. Weed & Bach (2018) also show that absolutely continuous mea-
sures that are almost low dimensional enjoy better rates for moderate values of n, until eventually
giving in to the curse of dimensionality.

In the limiting case d = 2p , there is an additional logarithmic term. For p = 1 the sufficiency
of this term was noted by Dudley (1969, p. 44), and the necessity follows from a classical result
of Ajtai et al. (1984) for μ uniform on [0, 1]2. For p > 1 and d = 2p , readers are directed to, for
example, Fournier & Guillin (2015).

That absolutely continuous measures are the ones exhibiting slow convergence rates in high
dimensions was already observed by Dobrić & Yukich (1995) in an almost sure sense: n1/d Wp

has a positive limit if and only if μ has an absolutely continuous part. There are results for more
general cost functions than powers of Euclidean distance; see Talagrand (1994) for μ uniform on
[0, 1]d and Barthe & Bordenave (2013) for a careful study of the two-sample version Wp (μn, νn).
Fournier & Guillin (2015) also deal with the Euclidean case, with some emphasis on deviation
bounds and the limit cases d = 2p .

del Barrio et al. (1999b) showed that J1 < ∞ is necessary and sufficient for the empirical process√
n(Fn − F ) to converge in distribution to B ◦ F , with B Brownian bridge. A thorough treatment

of the univariate case, including but not restricted to the Jp condition, can be found in Bobkov &
Ledoux (2018), using an order statistic representation for the Wasserstein distance. One may also
consult Mason (2016) for the alternative approach of weighted Brownian bridge approximations.

The topic is one of intense study, and the references here are far from exhaustive. We also men-
tion some extensions for dependent data: Dédé (2009), Cuny (2017), and Dedecker & Merlevède
(2017).

4. OPTIMAL TRANSPORT AS THE OBJECT OF INFERENCE

The previous section described applications of Wasserstein distances for carrying out statistical
tasks such as goodness-of-fit testing. The topic of this section is a more recent trend, where one
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views the Wasserstein space as a sample space for statistical inference. In this setup, one observes
a sample μ1, . . . ,μn from a random measure� taking values in Wasserstein space Wp of measures
with finite pth moment, and seeks to infer some quantity pertaining to the law of � using the
observed data, typically in a nonparametric fashion. Such questions can be seen as part of next-
generation functional data analysis, borrowing the terminology of Wang et al. (2016, section 6).

4.1. Fréchet Means of Random Measures

Perhaps the most basic question here, as anywhere, is estimating a mean. Clearly we could estimate
the mean of � by the average n−1(μ1 + · · · + μn), which is also a probability measure. While this
may often be a good estimator, in certain modern applications, such as imaging, it exhibits some
unsatisfactory properties. As a simple example, consider two Dirac measures at distinct points
x �= y . Their average is the blurred measure putting mass 1/2 at x and y . In contrast, as we
see below, the Wasserstein distance leads to an average that is a Dirac measure at the midpoint
(x + y)/2.

We focus on the special case p = 2, which is the most elegant and provides the canonical setup
in deformation models (see Section 4.2). One way of giving a meaning to the notion of expectation
in general metric space is to consider the Fréchet mean (better known in analysis as barycenter),
named after Fréchet (1948) and defined as the minimizer of the Fréchet functional

F (μ) = EW 2
2 (�,μ) =

∫
W2

W 2
2 (λ,μ) dP(λ), μ ∈ W2,

where P is the law of �. We shall refer to such a minimizer as the population (Fréchet) mean to
distinguish it from the empirical version, where EW 2

2 (�,μ) is replaced with
∑

W 2
2 (μi ,μ).

Existence, uniqueness, computation, laws of large numbers, and central limit theorems for
Fréchet means with respect to general metrics have been studied extensively under the umbrella
of non-Euclidean statistics (e.g., Huckemann et al. 2010, Kendall & Le 2011). Even existence
and uniqueness are nontrivial questions for many metrics and depend subtly on the induced
geometry. It turns out thatW2 induces a geometry that is very close to Riemannian (see Section 4.4).
Despite posing challenges in that it is infinite-dimensional, has unbounded curvature, and presents
an abundance of singularities, its geometry exhibits many favorable (indeed, quite unusual for
nonlinear spaces) properties owing to the structure of the optimal transport problem.

By means of convex analysis, Agueh & Carlier (2011) deduce existence, uniqueness, and a
characterization of empirical Fréchet means in W2(Rd ) in what has become a seminal paper.
Existence always holds, whereas the mean is unique provided that one of the measures μi is
absolutely continuous. The results extend to the population version (Pass 2013): The condition is
that with positive probability,� is absolutely continuous (assuming that the Fréchet functional F
is finite). A notable exception is, again, when d = 1, in which case Fréchet means are unique with
the sole restriction that F is finite.

A law of large numbers in Wasserstein space was proved by Le Gouic & Loubes (2017) in a
very general setting (for arbitrary p > 1, and for spaces more general than R

d ). Since W2(Rd ) is
itself a complete and separable metric space, one can view P, the law of �, as an element in the
second level Wasserstein space W2(W2(Rd )). Le Gouic & Loubes show that if Pn is a sequence
of laws converging to P in the second level Wasserstein space, then the Fréchet means of Pn

converge to that of P (if unique) in the first level W2(Rd ). This setup covers the case where Pn is
the empirical measure [in W2(W2(Rd ))] corresponding to a sample from�. Álvarez-Esteban et al.
(2018) provide an extension to trimmed Fréchet means.
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4.2. Fréchet Means and Generative Models

From a statistical perspective, the choice of a metric and the consideration of the corresponding
Fréchet mean often implicitly assume a certain underlying data-generating mechanism for the data.
In the case of the Wasserstein metric, this mechanism is inextricably linked to warping or phase
variation (Ramsay & Silverman 2005, Marron et al. 2015, Wang et al. 2016), where one wishes to
infer the law of a process Y on (say) [0, 1] but only has access to realizations of Ỹ = Y ◦ T−1, where
T : [0, 1] → [0, 1] is a random warp/deformation map. This setup is quite natural in physiological
data such as growth curves or spike trains where each individual may have an intrinsic timescale,
a sort of functional random effect. The problem would then be to correct for the effect of T that
distorts time and recover the sample paths in the correct or objective timescale. Typically, it is
natural to assume that T is an increasing homeomorphism, on the basis that time should always
move forward, rather than backward, and, for identifiability reasons, that ET(t) = t, t ∈ [0, 1].

Now, when the functional datum Y is a random probability measure in W2(Rd ) with intensity
E[Y ] = λ, the warped version Ỹ = T#Y is a random measure with conditional intensity � =
E[Ỹ |T] = T#λ. Assuming that T is increasing with ET equal to the identity then implies that λ is
a Fréchet mean of �. More generally, if λ ∈ W2(Rd ) and T is a random continuous function with
mean identity that can be written as the gradient of a convex function on R

d , then λ is a Fréchet
mean of the random measure � = T#λ. In other words, the Wasserstein geometry is canonical
under the deformation model, and estimation of a Fréchet mean implicitly assumes a deformation
model. The result in this form is due to Zemel & Panaretos (2018), but a parametric version is due
to Bigot & Klein (2018). When λ is absolutely continuous and T is sufficiently injective,� = T#λ
is absolutely continuous, and the Fréchet mean of � is unique and equals λ. In the particular case
of Gaussian measures, the result even holds in infinite dimensions (Masarotto et al. 2018).

4.3. Fréchet Means and Multicouplings

The Fréchet mean problem is related to a multimarginal formulation of optimal transport con-
sidered by Gangbo & Świȩch (1998). Given μ1, . . . ,μn ∈ W2(Rd ), an optimal multicoupling is a
joint distribution of a random vector (X1, . . . , Xn) such that Xi ∼ μi and

1
2n2

E

∑
1≤i< j≤n

‖Xi − X j ‖2 = 1
2n

E

n∑
i=1

‖Xi − X ‖2

is minimized. Agueh & Carlier (2011) show that if (X1, . . . , Xn) is an optimal multicoupling, then
the law of X = n−1 ∑

i Xi is a Fréchet mean of {μi }n
i=1. Inspection of their argument shows that

it can also give the only if direction. And, when at least one measure μi is regular, necessity and
sufficiency combined can be used to construct the optimal multicoupling as Xi = tμi

λ (Z), where
Z ∼ λ and λ is the Fréchet mean (see Pass 2013 and Zemel & Panaretos 2018 for more details).
This illustrates how constructing the optimal multicoupling is inextricably linked to finding the
Fréchet mean (for the latter, see Section 4.5). In fact, the argument of Agueh & Carlier (2011)
extends to infinite-dimensional and even nonlinear space. Let (X , ρ) be a complete separable
barycentric metric space: For any x1, . . . , xn ∈ X there exists a unique Fréchet mean x. Fréchet
means of given measures μ1, . . . ,μn ∈ W2(X ) are precisely the laws of X , where (X1, . . . , Xn) is
an optimal multicoupling with respect to the cost E

∑n
i=1 ρ(Xi , X )2. This relation illustrates the

idea that the Wasserstein space captures the geometry of the underlying space. As a particular
special case, the Fréchet mean of Dirac measures is a Dirac measure at the Fréchet mean of the
underlying points. Finally, we stress that the relation extends to any p > 1, where x(p) minimizes∑
ρ(xi , x)p and optimality is with respect to E

∑
ρ(Xi , X

(p)
)p . [Strictly speaking, these are not

Fréchet means, as one minimizes
∑

Wp
p (μi ,μ) instead of

∑
W2

p (μi ,μ).]
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4.4. Geometry of Wasserstein Space

A typical step in estimating Fréchet means in non-Euclidean settings is approximation of the
manifold by a linear space, the tangent space. In the Wasserstein case, the latter is a function
space. Let λ be the Fréchet mean, and assume sufficient regularity that λ is unique and absolutely
continuous. Then, convergence of a sample Fréchet mean λ̂n to λ can be quantified by that of the
optimal map t̂λn

λ to the identity map i because

W 2
2 (̂λn, λ) =

∫
Rd

‖t̂λn
λ (x) − x‖2 dλ(x) = ‖t̂λn

λ − i‖2
L2(λ).

Here L2(λ) is the L2-like space of measurable functions r : R
d → R

d such that the real-valued
function x �→ ‖r(x)‖ is in L2(λ), and whose L2(λ)-norm defines ‖r‖L2(λ). Thus, we can linearize
the Wasserstein space by identifying an arbitrary measure μ with the function tμλ − i in the linear
space L2(λ); subtracting the identity centers this linear space at λ.

4.4.1. The tangent bundle. Ambrosio et al. (2008) consider absolutely continuous curves in
Wasserstein space and show that optimal maps arise as minimal tangent vectors to such curves.
With that in mind, they define the tangent space at λ as the span of such maps minus the identity

Tanλ = {t(tμλ − i) : μ ∈ W2; t ∈ R}L
2(λ)
.

By definition, each tμλ (and the identity) is in L2(λ), so Tanλ ⊆ L2(λ), from which it inherits the
inner product. The definition can be adapted to a nonabsolutely continuous λ by restricting μ in
the definition of Tanλ to thoseμ for which tμλ exists (this optimal map might not be unique, and any
possible choice of tμλ leads to a tangent vector). There is an alternative equivalent definition of the
tangent space in terms of gradients of smooth functions (see Ambrosio et al. 2008, definition 8.4.1
and theorem 8.5.1). The alternative definition highlights that it is essentially the inner product
that depends on λ, but not the elements of the tangent space.

The exponential map expλ : Tanλ → W2 at λ is the restriction of the transformation that sends
r ∈ L2(λ) to (r + i)#λ ∈ W2. Specifically,

expλ(t(t − i)) = [t(t − i) + i]#λ = [tt + (1 − t)i]#λ (t ∈ R).

When λ is absolutely continuous, the log map log
λ

: W2 → Tanλ is

log
λ
(μ) = tμλ − i

and is the right inverse of the exponential map (which is therefore surjective). Segments in the
tangent space are retracted to the Wasserstein space under expλ to McCann’s (1997) interpolant[

ttμλ + (1 − t)i
]

#λ,

and these are the unique (constant speed) geodesics in Wasserstein space (Santambrogio 2015,
proposition 5.32). If λ is singular, then the log map is only defined on a subset of Wasserstein
space. Gigli (2011) provides a description of the tangent bundle when the underlying space R

d is
replaced by a Riemannian manifold.

4.4.2. Curvature and compatible measures. If μ, ν, ρ ∈ W2, then a coupling argument shows
that

‖ log
ρ
(μ) − log

ρ
(ν)‖2

L2(ρ) = ‖tμρ − tνρ‖2
L2(ρ) =

∫
‖tμρ (x) − tνρ (x)‖2 dρ(x) ≥ W 2

2 (μ, ν). 7.
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In differential geometry terminology, this means that W2 has nonnegative sectional curvature. In
the special case d = 1, there is equality, and the Wasserstein space is flat; the correspondence
μ ⇐⇒ tμρ − i is an isometry, and W2(R) can be viewed as a subset of the Hilbert space L2(μ).
Computation of Fréchet means is then particularly simple: If μ1, . . . ,μn are arbitrary measures in
W2(R) and ν is any absolutely continuous measure, then the Fréchet mean of (μi ) is [(1/n)

∑
tμi
ν ]#ν;

this extends to the population version. An important extension to R
d was obtained by Boissard

et al. (2015). Equality will hold in Equation 7, provided some compatibility holds between the
measures μ, ν, ρ. The composition tνρ ◦ tρμ pushes μ forward to ρ by definition, but might not
do so optimally. We say that μ, ν, ρ are compatible if tνρ ◦ tρμ is optimal, i.e., equals tνμ. Boissard
et al. (2015) show that if the collection (μ1, . . . ,μn, ν) is compatible (in their terminology, the
optimal maps are admissible) in this sense, then, again, the Fréchet mean is [(1/n)

∑
tμi
ν ]#ν. This

setup covers the one-dimensional setup, but also multivariate measures with structure that mimics
the one-dimensional case. For example, a collection of measures having the same d-dimensional
copula (and potentially different marginals) is compatible, and so is a collection of measures having
the same angular behavior but different marginal distributions for their norms.

4.4.3. Gaussian measures. Without such structural restrictions, the Wasserstein space is pos-
itively curved, and computation of the Fréchet mean of a sample is not straightforward. As an
important example, if μi ∼ N (0,�i ) are nonsingular Gaussian measures on R

d , then the Fréchet
mean is also Gaussian and its covariance is the unique nonsingular solution of the matrix equation

� = 1
n

n∑
i=1

(�1/2�i�
1/2)1/2. 8.

Theμi s will be compatible if the covariances commute, in which case we have the explicit solution
�1/2 = n−1(�1/2

1 + · · · +�1/2
n ), but otherwise there is no explicit expression for the Fréchet mean.

The restriction of W2(Rd ) to Gaussian measures leads to a stratified space whose geometry was
studied carefully by Takatsu (2011), including expressions for the curvature. In particular, the
curvature grows without bound as one approaches singular covariance matrices.

4.5. Fréchet Means via Steepest Descent

A common procedure for finding Fréchet means is differentiating the Fréchet functional F and
moving in the negative direction of the gradient (Karcher 1977, Afsari et al. 2013). The gradient
at x0 typically takes the form

∇F (x) = 1
n

n∑
i=1

− logx(xi ).

This formula also holds true in Wasserstein space, where the log map is as given in Section 4.4.
Steepest descent can then be defined using the exponential map as

ρ j+1 = expρ j
(∇F (ρ j )) =

[
1
n

n∑
i=1

tμi
ρ j

]
#ρ j .

The resulting iteration was independently arrived at in this steepest descent form by Zemel &
Panaretos (2018) and in the form of a fixed point equation iteration by Álvarez-Esteban et al.
(2016). It has the advantage of reducing the multitransport problem of finding the Fréchet mean
to a succession of pairwise problems that are simpler in nature, in the same spirit as generalized
Procrustes analysis (Dryden & Mardia 1998). This benefit is best illustrated in the Gaussian case,
where the optimal maps have the explicit expression given in Equation 4. The algorithm converges
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to the unique Fréchet mean in this Gaussian case and in general will reach at least a stationary
point (where ∇F vanishes). There are local minima that are not global: Álvarez-Esteban et al.
(2016) construct measures μ1, . . . ,μ4,μ in R

2 such that the average of tμi
μ is the identity, but μ

is not the Fréchet mean. Their example shows that the problem cannot be solved by smoothness
conditions on the measures. But smoothness and convexity of the supports yield an optimality
criterion for local minima (Zemel & Panaretos 2018), essentially, that a sufficiently smooth local
minimum is a global minimum.

4.6. Large Sample Statistical Theory in Wasserstein Space

The general consistency result of Le Gouic & Loubes (2017) is the important and necessary first
step in providing a sound statistical theory for random measures in Wasserstein space. The next
step would be to establish the rate of convergence and a central limit theorem. By exploiting the
central limit theorem in Hilbert spaces, the one-dimensional case can be well understood, even
under sampling noise: The empirical mean λ̂n, viewed as the L2 map,

√
n(t̂λn

λ − i), converges in
distribution to a zero-mean Gaussian process whose covariance structure is that of the random
element t�λ (Panaretos & Zemel 2016). Bigot et al. (2018b) provide minimax-type results in this
vein. Since the Wasserstein space on R

d stays embedded in a Hilbert under the compatible setup
of Boissard et al. (2015), these results can certainly be extended to that setup. In fact, Boissard
et al. (2015) use this embedding to carry out principal component analysis (PCA) in Wasserstein
space. Bigot et al. (2017c) provide an alternative procedure, convex PCA.

The only central limit theorem–type result we know of beyond the compatible setup was found
recently by Agueh & Carlier (2017). Suppose that � takes finitely many values: P(� = λk) = pk,
k = 1, . . . , K , and λk is Gaussian N (0,�k) with�k nonsingular. Given a sampleμ1, . . . ,μn from�,
let p̂n(k) be the proportion of (μi )s that equal λk. Then

√
n( p̂n − p) has a Gaussian limit. Equation 8

extends to weighted Fréchet means and defines � in a sufficiently smooth way, so one can invoke
the delta method to obtain a central limit theorem for

√
n(�̂n −�). Agueh & Carlier (2017) also

cover the case where K = 2 and λi are arbitrary, though this setup falls under the umbrella of
compatibility since any pair of measures is a compatible collection. Ongoing work by Kroshnin
& Suvorikova (2018) focuses on extending the results of Agueh & Carlier (2017) to arbitrary
random Gaussian/elliptical measures. Beyond this location-scatter setup, very recent results by
Ahidar-Coutrix et al. (2018) suggest that the rate of convergence of the empirical Fréchet mean
to its population counterpart can be slower than n−1/2.

5. COMPUTATIONAL ASPECTS

Beyond the one-dimensional and Gaussian cases, explicit expressions for the Wasserstein distance
and/or the optimal couplings are rare. When μ = (1/n)

∑n
i=1 δxi and ν = (1/m)

∑m
j=1 δy j are

uniform discrete measures on n and m points, a coupling γ can be identified with an n × m matrix
�, where �ij represents the mass to be transferred from xi to y j . The cost function reduces to a
cost matrix cij = ‖xi − y j ‖p , and the total cost associated with it is

∑
ij �ijc ij. This double sum is to

be minimized over � subject to the m + n mass preservation constraints

n∑
i=1

�ij = 1/m ( j = 1, . . . , m),
m∑

j=1

�ij = 1/n (i = 1, . . . , n), �ij ≥ 0.

One can easily write the constraints in the weighted version of the problem. This optimization
problem can be solved using standard linear programming techniques. In particular, there exists
an optimal solution � with at most n + m − 1 nonzero entries. In the special case n = m and

424 Panaretos · Zemel

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

19
.6

:4
05

-4
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 0

6/
29

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ST06CH19_Panaretos ARI 18 January 2019 15:32

uniform measures, the extremal points of the constraints polytope are the permutation matrices,
and these correspond precisely to deterministic couplings that have n (rather than 2n−1) nonzero
entries.

The specific structure of the constraints matrix allows the development of specialized algo-
rithms: The Hungarian method of Kuhn (1955) and its variant by Munkres (1957) are classical
examples, with alternatives such as network simplex, min flow–type algorithms, and others (see
Luenberger & Ye 2008, chapter 6). The best algorithms have the prohibitive complexity n3 log n
in the worst-case scenario. Sommerfeld et al. (2018) propose sampling s � n points from μ and
ν and estimating Wp (μ, ν) by the empirical distance Wp (μs , νs). They provide bounds on the
computational and statistical trade-off regulated by s.

The multimarginal problem can also be recast as a linear program whose solution yields the
Fréchet mean (see Section 4.3). If we have n measures μi supported on mi points (i = 1, . . . , n),
then the number of variables in the problem is

∏
mi , and the number of equality constraints is∑

mi , of which n−1 are redundant. Anderes et al. (2016) provide a detailed account of the problem,
in which they show the peculiar property that the optimal maps tμi

μ exist, where μ is a Fréchet
mean. This is far from obvious, since besides the uniform discrete setup with an equal number
of points, the optimal coupling between discrete measures is rarely induced from a map. There
are alternative formulations with fewer variables and fewer constraints: exact ones (Borgwardt &
Patterson 2018) as well as polynomial-time approximations (Borgwardt 2017).

One can certainly approximate Wp (μ, ν) by Wp (μn, νn) for some μn, νn supported on, say, n
points. The approximated problem can be solved exactly, as it is a finite linear program. How to
best approximate a measure by discrete measures amounts to quantization and is treated in detail
by Graf & Luschgy (2007). Unfortunately, quantization is extremely difficult in practice, and even
one-dimensional measures rarely admit explicit solutions; moreover, the computational cost of
solving the n-to-n points case scales badly with n.

Another class of algorithm is continuous in nature. Recall from Section 4.4 that optimal maps
tνμ are equivalent to the unique geodesics in W2. Benamou & Brenier (2000) exploit this equiva-
lence and develop a numerical scheme to approximate the entire geodesic. Although this dynamic
formulation adds an extra time dimension to the problem, it can be recast as a convex problem,
unlike the formulation with the optimal map as variable. Chartrand et al. (2009) carry out steepest
descent in the dual variable ϕ in order to maximize the dual ϕ �→ ∫

ϕ dμ+ ∫
ϕ∗ dν.

In an influential paper, Cuturi (2013) advocated adding an entropy penalty term κ
∑
�ij log�ij

to the objective function. This yields a strictly convex problem with complexity n2, much smaller
than the linear programming complexity n3 log n. This entropy term enforces � to be diffuse
(strictly positive), in stark contrast with the unpenalized optimal coupling, but the regularized
solution converges to the sparse one as κ ↘ 0. This idea is extended to the Fréchet mean problem
in Cuturi & Doucet (2014), where the Fréchet mean is computed with respect to the penalized
Wasserstein distance, and in Bigot et al. (2017b), where the penalization is imposed on the mean
itself rather than the distance. Bigot et al. (2018a) suggest a data-driven choice of the regularization
parameter according to the Goldenshluger–Lepski principle.

This field of research is very active, and there are tens of extensions and new algorithms.
One can find a short survey in Tameling & Munk (2018), and we refer to Santambrogio (2015,
chapter 6) and especially the book by Peyré & Cuturi (2018) for more details and references.

6. ON SOME RELATED DEVELOPMENTS

An interesting recent development that is, strictly speaking, not so much about Wasserstein
distances as about measure transportation itself, considers how to generalize notions related to
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quantiles to several dimensions. In one dimension, the quantile function F−1
Y is the optimal map

from a uniform variable U to Y . This observation can be used in order to define a multivariate
quantile function of Y using the optimal transport map tY

U from some reference random variable
U (e.g., uniform on the unit ball). Chernozhukov et al. (2017) describe the resulting form of the
quantile contours and the induced notions of depth and ranks, and estimate them from data. Fur-
ther work by Hallin (2017) considers extensions of the approach that do not require finite variance
for Y (as is the case in one dimension). This measure-transportation approach also allows us to
extend quantile regression to multivariate setups (Carlier et al. 2016).

Finally, due to space considerations, we have not attempted to describe the machine learn-
ing side of optimal transport, though there is a fast-growing literature for such tasks. Indicative
examples include estimation of a low-dimensional measure in high-dimensional space (Canas &
Rosasco 2012), regression in the space of histograms (Bonneel et al. 2016), dictionary learning
(Rolet et al. 2016), Gaussian processes indexed by measures on R (Bachoc et al. 2017) or R

d

(Bachoc et al. 2018), clustering in Wasserstein space (del Barrio et al. 2018), and unsupervised
alignment of point clouds in high dimensions (Grave et al. 2018).
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