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ABSTRACT. A product limit estimator is suggested for the 
transition probabilities of a non-homogeneous Markov chain 
with finitely many states. The estimator is expressed as a 
product integral and its properties are studied by means of the 
theory of square integrable martingales. 
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I. The model and a summary of the results 

We shall consider a right continuous Markov chain 
(Xt, t E [0, 1]) on a finite state space Ewith intensities or 
forces of transition given by Q(t) = (qi2(t), i E E, j E E) 
where for all i*j E E 

qij(t) > 0, qii(t) < 0 and j qjj(t) = 0, (1.1) 

qjj() is left continuous and has finite right hand 
limits, such that (1.2) 

qi,(t) dt < oo. (1.3) 

It is well known, see Goodman (1970), and Do- 
brushin (1953), that under these assumptions, the 
transition probabilities are given by the differential 
equations 

-P(s, t) = - Q(s) P(s, t) (1.4) 
as 

a-P(s, t)=P(s t)Q(t) (1.5) 
at 

with initial condition P(s, s) =-. The equations hold 
almost surely with respect to Lebesgue-measure. 

The solution to these equations P(s, t) is abso- 
lutely continuous as a function of s and t and is 
given by the product integral 

P(s, t) = rl (I+ Q(u) du) 0 <s <t < 1 (1.6) 
]s.t] 

see e.g. Dobrushin (1953) or Johansen (1977). 
The solution satisfies the Chapman-Kolmogorov 

equation 

P(s,t) =P(s,u)P(u,t) O<s?u?t<1. (1.7) 

Consider first the problem of estimating P(s, t) 
on the basis of independent observations {Xtk), 
te[O, 1], k=1, ..., n}, where the kth process has 
transition probabilities P(s, t) and initial distribu- 
tion p(k)* 

The obvious estimator of the transition probability 
is 

n 

EI 
r 

X() = i, Xtr =j} 

Pi)(s, t) r=i (1.8) n 

E 1{X-f2-i} 
r=1 

which is simply the fraction of observations, available 
in i at time s, which end up in j at time t. 

This estimator does not satisfy equation (1.7) and 
does therefore not belong to the class of functions 
considered in the model. The idea underlying (1.8) 
is also not very useful when censoring is present. 

The estimator can be modified as follows: We 
split the interval [0, 1] by a partition {tm} so fine 
that in each interval at most 1 jump occur. We then 
apply (1.8) to each interval and define 

P(s, t)= r7 p( )(tm, tm+i). (1.9) 
s<tM<tM+,-<t 

Each of these factors is either the identity, if no jump 
occurs, or a stochastic matrix with only 1 off diago- 
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142 0. 0. Aalen and S. Johansen 

nal element positive and equal to [r= 1{X(2 - 

placed at position (i, j) if the jump took place from 
i to j at time u. A different representation is given 
in (5.1). 

This estimator does not depend on the choice of 
partition and can be considered a generalization of 
the product limit estimator discussed by Kaplan & 
Meier (1958) and Breslow & Crowley (1974). Notice 
how the estimator is constructed as a product in- 
tegral, a concept which formalizes that of a product 
limit. It is a basic idea of this paper that Markov 
chain transition probabilities are constructed in 
exactly the same way from their intensities as the 
above product limit estimator is constructed from the 
observed jumps. It is the formalism of the product 
integral representation that allows us to write up the 
basic stochastic integral equation (3.3) which again 
allows the martingale theory to be applied. The 
estimator (1.9) therefore satisfies (1.7) and, as we 
shall see in a certain sense also (1.4) and (1.5). It is 
not however absolutely continuous and a third esti- 
mator P can be constructed which interpolates be- 
tween the steps of P. 

This estimator is constructed using the observa- 
tion that the factors of P are simple stochastic ma- 
trices that are imbeddable in time continuous homo- 
geneous chains, see Johansen (1973). 

The methods used for analyzing the independent i- 
dentically distributed observations can also be used for 
analyzing the situation where the processes XI",..., 
XI' are censored. This is an important extension of 
the theory since in many medical and engineering 
applications the processes are only under observa- 
tion part of the time. Therefore we present in section 
2 a general model of censoring including most of 
those commonly considered in the literature. We 
will show that the multiplicative intensity model for 
counting processes (see Aalen 1978 b) play a central 
role in the description of censored processes. 

In section 3 we will show how an estimator for 
the integrated intensity allows us to define P as a 
product integral relative to the censored processes. 
This section also contains the exact properties of the 
estimator. We derive those by employing the theory 
of square integrable martingales as well as results on 
product integrals to represent P as the solution to a 
stochastic integral equation. From this follows cer- 
tain martingale properties of P. 

The same technique is used in section 4 to obtain 
the asymptotic distribution of the process P. In 5 
the smoothed estimator is discussed and it is proved 
that it has the same asymptotic properties as P. 
Finally, in the appendix we have collected a few 
items that supplement the methods used in the paper. 

The estimator P was previously suggested and 
studied by one of the authors (Aalen, 1973 and 

1978 a) in the case when E has only one transient 
state. It was stated in Aalen (1973) that an extension 
to general Markov chains was possible. When the 
present paper was essentially finished, it came to our 
attention that Fleming (1978 a, b) has suggested the 
same estimator P as we have. He does, however, only 
treat the uncensored case and gives no exact results. 
He also does not give the smoothed version of the 
estimator. Also, our methods are quite different from 
Flemings, especially our use of the product integral 
representation. 

Fleming, by the way, estimates partial transition 
probabilities. It will be apparent from our approach 
that the number of processes under observation in 
each state may be allowed to vary quite freely. 
Clearly, therefore, the estimation of partial transition 
probabilities is really included in our treatment. 

2. A general model for censoring 

Define Yi(k)(t) = 1 {Xt = i}. Let Ki(k)(t) denote the 
number of jumps directly from i to j that Xk') has 
performed in the time interval [0, t], hence the pro- 
cess Kt(k) is right-continuous. Put K = {Kk(j), k = 1,... 
n, i,jeE}. 

Let nO be the space of possible sample paths of K 
for t e [0, 1]. Let (A, A, P1) be a probability space 
with P1 not depending on the intensity Q, and let 
Q be the Cartesian product of QO and A. Let 7t 
be the product a-algebra on Q corresponding to the 
a-algebra A on A and the a-algebra on nO generated 
by {K(s), 0 ?s st}. The family {t, 0 st s 1} is in- 
creasing and right-continuous (see Boel et al., 1975). 
Let P be the product measure on =.71 generated 
by the measure P1 on A and the measure on 71= 

t{X(k) 0 < t < 1, k = 1, ..., n} given by the previously 
defined Markovian structure. 

K is a multivariate counting process with Kj7k) 
having intensity process qi1 ys(k) relative to {7t}. In 
this paper we will exploit the recently developed 
martingale-based approach to counting processes, 
see e.g. Boel et al. (1975) or the short review in 
Aalen (1978b). A consequence of that theory is that 
the M,(jk) defined by 

t 
M(k)(t) = K(k)(t)- ,fqi(s) y(k)(s)ds 

are orthogonal, square integrable martingales with 
variance process 

t 

<Mt J), Mi(jk)> (t) 
- 

qij(s) Yt(k)(s) ds. 

(See e.g. Meyer, 1971 for these concepts.) 
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An empirical transition matrix 143 

The censoring process is a stochastic process J = 

(J1, ..., J) which has piecewise constant and left- 
continuous sample functions taking the values 0 and 
1 and with a finite number of jumps. We also assume 
that J(t) is measurable with respect to {7t} for all 
t E 10, 1]. The process X/"k) is observed at those times 
t for which Jk(t) =- 1. 

Notice that J(t) may depend in almost arbitrary 
ways on what has been observed in the past and on 
outside random variation (modeled by the space A). 
Hence, our censoring scheme is considerably more 
general than those commonly considered in the 
literature, see e.g. Kaplan & Meier (1958). 

Define now the stochastic integrals 

rt 

M )(t) = fJk(s) dMzjlk)(s). 

By the theory of stochastic integrals (see e.g. Meyer, 
1971), the l(>) are orthogonal, square integrable 
martingales. Hence, by the above mentioned count- 
ing process theory, K k 1, ..., n, i,jeE} 

given by 

t 

'= Jjk(S) dKi(k)(s) 

is a counting process with ij) having intensity pro- 
cess qij Jk yik) relative to { We callk the censored 

process. 
Define now Ni=2 Kij), Nt Jk _ (), N* 

{Ni,i E E} and N={N2j,i,j e E}. N is a counting 
process with N1j having intensity process qijNi. The 
assumptions made above imply that N and N* are 
observed over the time interval [0, 1]. 

Assume for a moment that A is the trivial a- 
algebra. In Aalen (1978b) it is proved that the stat- 
istic {&k Kkjk), i, jE E} is complete for the nonpara- 
metric model defined by (1.1), (1.2) and (1.3). Since 
(N, N*) is a measurable function of that statistic it 
follows that (N, N*) is complete. 

If (N, N*) is sufficient, then we have a case of 
the multiplicative intensity model studied in Aalen 
(1978 b). Obviously, the inference procedures devel- 
oped for that model is applicable whether (N, N*) 
is sufficient or not, but in the latter case some in- 
formation will be lost by only applying those proce- 
dures. 

The question of when (N, N*) is sufficient has 
been treated in Aalen (1978c). The results indicate 
that (N, N*) is in general sufficient when all J1 are 
decreasing processes, i.e. in the case of right-cen- 
soring, while otherwise it will generally not be suf- 
ficient. In the case of uncensored processes suf- 
ficiency is clear by a simple likelihood consideration 
(see Aalen (1978b)). 

Finally, one should note that this whole problem 
of sufficiency only arises when one can follow each 
process X(k) individually over the time interval {t: 

Jk(t) = 1 }. Sometimes this may not be the case, and 
one may at any time t only be able to observe the 
numbers of processes in each state and the jumps 
that occur without knowing which process that 
jumps. Of course, this amounts precisely to observing 

(N, N*). 
At any rate, in the present paper we will study 

estimation of P(s, t) based solely on the statistic 
(N, N*). Put Mij(t) = Nij(t) - fI Ni(s)qij(s)ds. 

3. The estimator and its exact properties 

It was suggested by Aalen (1978b) that one should 
use 

t 

B?j(t)= 1 {Ni(s)> 1}Ni(s)-'dNi1(s) i*j (3.1) 

as an estimator for the integrated intensity Bij(t) = 

ft qj(s)ds. This estimator has previously been sug- 
gested for life testing models by Altshuler (1970) and 
Nelson (1969). 

From the integrated intensity (3.1) it is now pos- 
sible to estimate the transition probabilities using the 
theory of product integrals. 

The necessary theory for constructing Markov 
chains from integrated intensities, that are not abso- 
lutely continuous with respect to Lebesgue measure 
was given by Dobrushin (1953), who developed the 
product integral for matrix valued measures, see also 
Johansen (1977). A similar problem was solved by 
Jacobsen (1972) for countable state chains. 

In terms of product integral we now define 

P(s, t)= Hl (I+dB') (3.2) 
Is,t] 

where Bij is given by (3.1) and Bi, = -:*t Blj. 
Since B is a purely discrete measure with finite 

support, P reduces to a finite product of stochastic 
matrices. For very small intervals ]s, t], either 
M]s, t] = 0 in which case AP(s, t) = Ior there is one jump 
occuring in ]s, t], from i to j at time u, say, then 

dBij(u) = Ni(u)-' and this means that P(s, t) is a 

stochastic matrix with only 1 off diagonal element 
different from zero. Thus (3.2) is the same as the 
estimator (1.9). 

Once the intensity is estimated one can also derive 
estimates of the waiting time distributions 

GJ0, t] = 1 - H (1 + dBi) 
t0. t] 

by simply inserting Bij instead of Bi2. 
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144 0. 0. Aalen and S. Johansen 

Put Fi(t) = 1 - GJO, t]. Then we get: 

Fi(t) = 1 - GJO, t]= (1 + dBii)= 1j - JV(tr)) 

where {tr} denotes the times where a jump occurs 
from i. 

This estimator generalizes, in a different sense than 
, the estimator suggested by Kaplan & Meier 

(1958). 
Let 

t 

Bij(t) = f l{Ni(u) > 1} qi(u) du 

and 

P(s, t)= H (I+dB). 
Is, t] 

Then the following result is an analogue to Theorem 
6.2 of Aalen (1978b). See the appendix for the nota- 
tion. 

Theorem 3.1. The process P(O, t) = Fio.t (I+ dB) 
satisfies the stochastic integral equation 

t 

P(O, t) P(O, t)- -I = P(O, s) d(B - B) (s) P(O, s)-1 

(3.3) 

Further Mt =P(O, t)P(O, t)-1 -I is a square in- 
tegrable martingale and 

t 

<Mt, Mt> = JfP(o s) 

?P(O, s) d<B - B, B-B> sP(OP S)1 

OP(O, s1 (3.4) 

where 0 denotes the Kronecker matrix product. 
It follows from the above relations that 

EP(O, t)P(O, t)-1 = I 

and that 

V{ P(o, t) P(O, t)'} 

=E(P(O, t)P(O, t)-1-I)(Pi(O, t)P(O t)-1-I)' 

= EJ' P(O, s-) 

? P(O, s -) d<B - B, B -B> (s) P(O, s)f 

tP(O, s) 

Proof. As is shown by Johansen (1977), P satisfies 
the differential equation 

dP(O, t) dB 
dv P(PA t-)-dv a. s. [vol 

dv0 dv0 

and P(t, 1) satisfies the equation 

dPt,l1) dB~ 
dP d- P(t 1) a.s. [vj] 
dv0 dv0 

where v0 is a measure that dominates the measures 
of B and A. One can take v0 = - trA - trA. 

Then 

(P(0, s) P(s, 1)) 
dvo 

-=o p(, _dP(s, 1) + dP(o, s) 
=O, s-) 

dv0 dv 
P 

1dB dAB 
=P(0, s-) P(s, 1) 

d dvo 

Integrating from 0 to t gives 

P(, t)MP(t, 1) - P(0, 1) 
t 

= f P(O, s -) d(B - B) (s) P(s, 1) (3.5) 

Now 

Det P(0, 1) = exp { i 1 {N2(u)> I} qii(u) du} 

> exp {Ej qii(u) du} > 0. 

Hence we can divide through in (3.5) by P(A, 1) 
which proves the relation (3.3) as a Stieltjes integral 
for a given realization of the process. 

In order to prove that it is a stochastic integral, 
and in fact a square integrable martingale we first 
note that each element of the matrix is the sum of a 
finite number of integrals of the form 

t 

Pik(O, s -) d(Bkm - Bkm) (s) mp(0, s) 

The coefficients Pik(O, s -) and pmi(0, s) are left 
continuous and measurable with respect to ts. 
Further pik(0, s -)1 and pmj(0, s) is evaluated as 
follows: 

1pmi(O, s) I = I (Det P(0, s))-1 1)1dI H Pi(i)(O, s) 

a(i)tJ 

< (Det P(n, b))-o(k - 1)! 

where k is the number of states in E. 
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An empirical transition matrix 145 

Thus the coefficients are bounded predictable pro- 
cesses. By proposition 3 of Doleans-Dade & Meyer 
(1970) it now suffices to prove that 

E dIBkm-Bkm I (s) <0o (3.6) 

and 

Efd<Bkm-Bkm, Bkm Bkm> (s) < (3.7) 

By Theorem 6.2 of Aalen (1978b) the process 
Bkm - Bkm is a square integrable martingale and 

EIBkm-BkmI (t) 

t and 

EKBkm - Bkm, Bkm - J3m> (t) 

=EJ 1{Nk(u)> 1}Nk(uN-l'km(u)du. (3.8) 

All these integrals, however, are bounded by 
0I qkk(u)du I < oo which completes the proof of Theo- 

rem 3.1 (see the appendix). 
Using a similar argument one can prove the fol- 

lowing results about the generalized Kaplan-Meier 
estimator of the waiting time distribution. 

Theorem 3.2. The process J[o. t] (I + dB'i) =Pi(t) satis- 
fies the stochastic integral equation 

Pi(t) Fi(t)-l - 1 = I Pi(s -) d(hBi - Bti) (S)P2(s)Y' 

where Pi(t) = HJ0o. t] (1 + dBfi). Hence 

St = Pi(t)?Fi(t) 
- - 1, i Ei E, 

are orthogonal square integrable martingales and 

t 

KSt, St> = Pi(s - )2d<B 
' 

- B_, Bii - B_i> (s) pi(s)2 

Remark. Notice that Theorems 3.1 and 3.2 only 
depend on the fact that N1j is a counting process 
with intensity process Niqi1. Since the only important 
requirement to N1 in the counting process theory is 
that it be predictable, one may in principle introduce 
rules to control the size of Ni such that it does not 

become too small. This requires that one has an 
"infinite reservoir" of possible observations, that can 
be inserted into the states when needed. If in parti- 
cular Ni(t) > 1 for all i and t, then P =P and so P is 
unbiased. The same holds for the Pi. 

4. Asymptotic properties of the estimator 

We shall first prove a general result about weak 
convergence of stochastic integrals, which is a modi- 
fication of Theorem 2.1 in Aalen (1977). The condi- 
tions have been slightly changed so as to be easier 
to verify. 

We start with a sequence of counting processes 
Ni, nm i = 19 ... k; n = 1, ... with intensities At. n and we 
let Mi. n(t) = Ni, n(t) - fJj A1, n(u)du. Let Hi n be pre- 
dictable processes satisfying Hi n eL2(M ,n) SO that 
Yi, n = f Hi ndMi, , is a square integrable martingale. 
Set Yn =(yin, Ykn). 

In order that these stochastic integrals can be 
evaluated as Stieltjes integrals we shall assume 
(Requirement A of Aalen (1977)): 

1 

Ef IH(s)IdN(s)< oo (4.1) 

for any H and N as above. 
A general result of Rebolledo (1977) about weak 

convergence of martingales shows that in order that 
the processes Yn converge weakly to a Gaussian pro- 
cess the conditions of Theorem 2.1 of Aalen (1977) 
are sufficient: 

rt rt 

fH.n(s)2A,n(s) ds J g2(s) ds Vi,t (4.2) 

E fHi2n(s) 1 {lH1,n(s)|>E}dN1,n(s)-O V8>0 

(4.3) 
Here gi(s) is some function in L2(0, 1). 

Theorem 4.1. Let the following conditions be satisfied 

Hi.n(s) O, n -oo Vi, s (4.4) 

Hi!n(s) Ai n ) g2(S), n -oo Vi, s (4.5) 

g2(s) bounded on [0, 1] Vi (4.6) 

Hi2n(s)Ai,n(s) integrable uniformly in (n, s, i). (4.7) 

Then if W1, ..., Wk are independent Wiener pro- 
cesses and Y= (f g d W1, ..., 5i gkd Wk) we have 

yn W y. 

Proof. We shall show that (4.2) and (4.3) are 
satisfied. 
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146 0. 0. Aalen and S. Johansen 

Since we are using uniform integrability we re- 
mind about the following standard result for a 
sequence of random variables {X,}: 

Xn ) 0, X. uniformly integrable=> EX, -n 0. (4.8) 

Let now 

K, n(s) = I Hi2 n(s) A. n(s) -gs(s) ) 

By (4.5) Ki, n(s) p 0 and since, by (4.6) and (4.7).Kj, (s) 

is uniformly integrable it follows from (4.8) that 

EKi,n(s) - 0. Since EK. n(s) is bounded in (n, s) we 
get f' EKE n(s)ds - O but this easily implies (4.2). 

To prove (4.3) note that 

fHi n(s) l{ I Hi. n(s) >4 d Ni.n(s) - A, n(u) du} 

is a martingale and hence 

t 

EJ Hi2 n(s) 1{I Hi. n(s) | }dNi, n(s) 

=EfH n(s) Ai n(s) I{ HiH n(s) I >,} ds. 

From (4.4) and (4.5) it follows that 

Zi, n(S) = Hi2,n(s) Ai, n(S) 1 { I Hi, n(S) I > 0} Os0 

but (4.7) implies that Zi n(s) is uniformly integrable 
and hence EZi, n(s) - 0 but since also EZi, (s) is 

bounded in (s, n) we get fS EZi, (s)ds0, which 
proves (4.3). 

For applications of this theorem it is worth noting 
that the uniform integrability of a sequence of ran- 
dom variables {Xn} is implied by a condition like 

ElXn I 1+6 < c or, for positive variables by Xn w- X and 

EXn -- EX. 
We shall now study the asymptotic properties of 

P when the number n of observed processes increases 
to oo. We write J'n' n(Jffn), ..., Jn(n)) to indicate that 

each element of the censoring process may depend 
on all observed processes. Of course, all stochastic 
processes occurring below will depend on n, but we 
will generally suppress n from the notation. We will 
first give a consistency result. We define the norm 
of a matrix A by IAl =supi >j I aij1. 

Theorem 4.2. Make the following assumption: 

E[l{Ni(t)> l}Ni(t)-] +P{Ni(t) = O} - for all 

i and t. 

Then: 

sup IP(O, t)-P(O, t)I P0 
t 

Proof. We have 

[P(?, t) -P(O, t)I = I(P(O, t)P(O, t)-1 -I)P(O, t) 
?(P(O, t)P(O, t)-1 -I)P(O, t) 

* IP(O, t)P(O, t)-1 -Il + IP(O, t)P(O, t) -Il 

We will treat these two terms separately. From 
Theorem 3.1 we have 

P(O, t)P(O, t)'--I 

t 

The|P(O, 

s - ) 
d(B - B) (s) 

P(O, 

s)'. 
The ijth term of this integral is a sum of stochastic 
integrals of the form 

rt 

J Pik(o S-) d(Bkm -Bkm) (s)]pmj(O, S) 

and we shall therefore first study the joint limiting 
behaviour of the processes 

Ykm,n(t) = Pik(O, S-) p (O, S) d(Bkm-Bkm) (S) 

rt 

- f Vnpik(o, s ) mJ(O s) 

x 1{Nk(s) > 1 } Nk(S) dMkm, n(s) (4.9) 

where, here and in the following, i and j has been 
suppressed in the notation. 

The stochastic integral given in (4.9) was in- 
vestigated in (3.6), (3.7) and (3.8) and it was proved 
that 

E Ykm, n(l)) 

= EJ JPik(0, s -) (~mI(O, s))2 Nk(s)1 

x l (Nk(S) 1> 1 ) qkm(s) ds 

? cE 1{Nk(s) > 1} N l(s)'qkm(s) ds 

for some constant c. By the assumption and Lebes- 
gues dominated convergence theorem the last expres- 
sion converges to 0, and so it follows by a sub- 
martingale inequality (Doob, 1953, Theorem 3.4 and 
p. 354) that 

sup IP(O, t)P(O, t)f'IIA >0 
t 

Using 
t 

R;O, t) P(O, 0)-l - I= |P(O, s) d(B - B) (s) P(O,- S)-l 
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we get 

|P(O, t)P(O, t)- -II <J dIB-BI. 

Now we have the evaluation 

0 s Bi(t) - Bij(t) I 1{Ni(s) = 0} qij(s) ds. 

From the assumption of the theorem and Lebesgues 
dominated convergence theorem we have 

1 ? 

Ef 1{N2(s) = 0} qij(s) ds = P{Ni(s) = 0} qij(s) ds --0 

Hence we may conclude: 

sup I P(0, t) P(O, t) 
- I I | O0. 

t 

We will now prove a weak convergence result. In 
the proof we will consider the stochastic integrals 
Ykm, n(t) defined by (4.9). These integrals have the 
form needed to apply Theorem 4.1 if we define 

Hkm, n(t) =VnPik(0, t)p m(0, t) 1 {Nk(t) > 1 } Nk(t)-. 

Akm,n(t) = 
Nk(t)qkm(t), 

Hkm,nAkm n(t) = nPik(O, t -)(p m(, t))21 {Nk(t) 

> 1 }Nk(t) lqkm(t ) 

We will now make an application of Theorem 4.1. 
Let Wkm, k#m, be independent Wiener processes 
and define 

Ykm(t) (p(S)) dWkm(S) k*m, 

Ykk = E km9 
m*k 

U(t) = J'P(O, s) Y(ds) P(s, t). 

Here pk(s) is a function assumed to be > a >0 for 
all k and s. 

Theorem 4.3. Make the following assumptions: 

(i) 1/ < {Ni(s)=O}qii(s)ds L+O Vi 

(ii)I -N(t) p) pi(t) Vi, t, 
n 

is uniformly integrable in (n, t, i). 

Then: 

V'n( - P) => U. 

Proof. We first consider the stochastic integrals 
Ykm, n. We have to check the conditions of Theorem 
4.1. 

Condition (4.1) holds immediately since Hkm, (t) 

is bounded and ENkm(l) < oo. 

Condition (4.4) follows from the consistency of 
P(o, t) together with assumption (ii). Similarly (4.5) 
follows and also (4.6). Condition (4.7) follows from 
assumption (iii) since the coefficients k2 and (pmi)2 

are bounded. 
Thus we have established that 

Ykm, n =>- Vkm 

with 

Vkm(t) X Pik(O S)pi(O, s) V dWkm(s) 
Pk(S) 

t 

J Pik(O, s) Pm1(O, s) dYkm(s) 

Hence 

rt 

V'n(P(O, t) P(O, t)1 - I) 
w 

J P(O, s) dY(s) P(O, s)-1 

Now 

l/n(P(O, t) - P(O, t)) = l/(P(O, t) P(O, t)- I) P(O, t) 

+ V'/(P(O, t) -P(O, t)). 

Hence we have completed the proof if we can prove 
that 

I/(F(o, t) -PAO t)) O . 

This follows, however, from 

rt 
P(o, t) - P(O, t) = P(O, u) d (B - B) (u) P(u, t). 

and 

P (O, t) - P(O, t) | 2 IJ {Ni(u) = 0} I qii(u) I du 

Hence by assumption (i) 

sup lIFP(O, t) -P(O, t)I P 0, n-oo 
t 

We have now found the asymptotic distribution of 
P. The covariance matrix of the limiting distribution 
is found as follows: 
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E<U, U>(t) 

Jt 

- P(O, s)0P(O, s)d<Y, Y> (s)P(s, t)?P(s, t) 

(see the appendix). 
But 

ftqkm(u) 
< Ykm, Yk'm'> (t) = 

PJUm 
du if 

Jo Pk(U) 

(k', im') = (k, m) and 0 otherwise. 

Let Cij denote the intensity matrix with element 
(i, j) equal 1, element (i, i) equal -1 and the rest 
zero, then 

<Y, Y> (i)= j qkp(U) du Ckm? Ckm. 

The following theorem gives a consistent estimator 
of the covariance matrix of the limiting distribution. 

Theorem 4.4. Suppose the conditions of Theorem 4.3 

hold with (iii) substituted by 

(iii)' n21 {N,(t) > 1 } N(t)-2 

is uniformly integrable in (n, t, i). 

Define: 

V"(t) = JPo(, sO )P(0, s) dZn(t) P(s, t) 0P(s, t) 

where 

Zn(t)= | nl{N2(s)> 1} AT(s)-2dNi,(s) Cij? Cie. 

Then 

sup I Vn(t) - E< U, U > (t) | O 

Proof. Define: 

t 

Zij,n(t) = f n1{Nj(s) > 1}Nj(sV2dNj(s). 
0 

By the consistency of P it is enough to prove for 
each pair (i, j): 

Sup I ZU. n(t) _ Jq() ds I O. 
t .1 (s 

We have 

Zj n(t) - if(s)ds 

| nl{Ni(S) > 1}N(s2dMij(S) 

rt 

+ I [nl {Ni(s) > 1} N3(s)f -pi(s)1] qij(s) ds 

= An(t) + Bn(t). 

It follows immediately from the conditions that 

supt I Bn(t) l - O. Now, An(t) is a square integrable 

martingale, and so sup I An(t) l 0 if 

E<An(l), An(l) 

=E n2 l{N,(s) > 1} Ni(s)-3q(s) ds 

converges to 0. This is, however, an immediate 
consequence of the assumptions, using the result 
(4.8). 

The verification of the assumptions of the theo- 
rems in this section in the uncensored case is a 
straightforward exercise. 

For the empirical waiting time distributions we 
may prove the following results in a way similar to 
above. 

Theorem 4.5. Make the assumption of Theorem 4.2. 
Then: 

sup I Pi(t) - F,(t) | ? 
i,t 

Let k be the number of states in E. 

Theorem 4.6. Make the assumptions of Theorem 4.3. 
Then the vector 

In(F"'1 - Fl, ...,) Pk - Fk) 

of stochastic processes converge weakly to the vector 

(F1 Y, ..., Fk Ykk). 

An estimator of the asymptotic variance of jn(.P - 
Fi) is given by 

.P2(t) nl {Ni(s) > 1 }Nj(s)-2dNj(s) 

which is consistent under the assumptions of Theorem 
4.4. 

Theorems 4.5 and 4.6 generalize results of Bres- 
low & Crowley (1974) and Aalen (1976). 
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5. The smooth estimator and its properties 

In this section we shall discuss the smoothing of the 
estimator (1.9). Let us first give a different formula 
for the estimator P. We let the jumps of the processes 
occur at 0 < s1 < s2 < ... and let the nth jump go from 
in to j,. Then 

P(s, t)= r (I+N(Sn)Cinn) (5.1) 
s<sn t 

Note that a very simple algorithm exists for com- 
puting P(s, t). Assume P(s, u) has been computed 
and that the next jump occurs at ul( > u) and goes 
from i to j. Then P(s, ul) is constructed as follows: 
The ith column is multiplied by (1 - l/Ni(u1 - )) and 
the remaining is added to column j. 

P(s, t) can also be computed backwards as follows: 
If P(u, t) has been computed and the nearest previous 
jump is at time u1( < u) from i to j then only the ith 
row is replaced by a convex combination of the ith 
and jth rows with weight (1 - l/Ni(u1 -)) and 

1l/Ni(ul -) respectively. 
In order to smooth P we note that 

etCiJ = I + Cij(l - et). (5.2) 

This follows from C= - Cij together with the 
series expansion for the exponential function. 

The matrices etCiJ are the simplest imbeddable 
stochastic matrices, see Johansen (1973) and the re- 
presentation (5.2) and (5.1) exhibits P(s, t) as a 
finite product of these elementary matrices 

P(s, t)= rl exp (ln Nn(sn) 1c 

It is therefore not difficult to interpolate to make 
this estimator smooth. We just define 

Q(t) = In N()-1 Ctnn Sn- <t<Sn 
Sn- Sn-I Ni(n- 

and 
n-i 

B(t) = (sc) +Q(t), Sn-1 < t -< Sn 
k=i 

and 

P(s, t) = I (I JdB) = P(s, sn) eQ(t), Sn- < t < Sn 
Is.t] 

Then one easily checks that P and P coincide at 
all the jump points, but whereas P is piecewise 
constant we have obtained that P is absolutely 
continuous and satisfies the Kolmogorov equations 
(1.4) and (1.5) with the 1B given above. 

Clearly the estimates P and 1P are not very dif- 
ferent, but P(O, t) is not measurable with respect to 

It since it depends on where the first jump after t 
is going to happen. 

The difference can be evaluated as follows 

P'(O, t) - }3(0, t) I < I P(0, s,-_l) (eQ(t) - I) 

e | et)- II 6 < (t) I el()l s,,_- < t <s S 

Now 

Q 
Sn -Sn Nin(sn) - 1 Nin(sn) - 1 

If the assumptions of Theorem 4.2 hold then 

supt I Q(t) I 
P 

0 as n - oo. This implies that P and P 
have the same asymptotic behaviour. 

6. Appendix 

In this appendix we have collected a few results 
which provide a background for some of the methods 
in the main body of the paper. 

We shall discuss briefly square integrable matrix 
valued martingales and stochastic integrals with 
respect to them, and we shall prove that the process 

Nij is in fact a counting process with intensity 

Niqi1. For the theory of square integrable martin- 
gales and stochastic integrals, see e.g. Meyer (1971). 

Let now M be a matrix of square integrable 
martingales on [0, 1]. We define <M, M> as the 
matrix we get by substituting in the Kronecker 
product MOM, the element MijMkm by <M11, Mkm>. 

Then M0M - <M, M> is a matrix valued martin- 

gale. 
Next we shall use stochastic integrals with respect 

to such an M. Let K and H be matrices of predictable 
processes, with a dimension such that the matrix 
product HMK has a meaning and such that 

1 

EJ H,(u) Kkm(u) d<Mst, M3t> (u) <co 

for all i, j, k, m, s, t. 

Then 
t 

J H(u) dM(u) K(u) 

is defined as the matrix with elements 

rt 

Hik(U) Kmj(U) Mkm(dU). 

It follows that ft HdMK is a square integrable 
martingale and some calculations show that 

K HdMK, HdMK = {H0Hd<M,M>KOK. 
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The only rule that is needed repeatedly is the bi- 
linearity of < *, - >, i.e. 

K f|Hi dMi, Kj dMJ) 

= Ei2Ej 'Hi0Kjd<Mi, M>>. 

These formulae are used in the discussion of the 
variance of P and A. 

Consider now a single uncensored process. We 
shall prove that the intensity of N1j is in fact qi2Ni. 

Let N= f*j Nij and consider {Nfj} a marked 
point process, with marks Y. The intensity of this 
process can be found as follows, see Bremaud & 
Jacod (1977). Let again the nth jump take place at 
time sn and go from in to jn. Let An denote the 
event {S =sv, Yv =(iv, jv), v = 1, ..., n - I }. Then if 

F?(S I An) P{Sn > s + Sn-i, Yn = () I An} 

= J 8n1+s q1,(u) exp qii(v) dv dul{jni = i} 

and 

rOD 

Fn(s I AJ,) = 2 Fn(S I An) = exp 1 qjn-1 Jn-l(v) dv 

we define 

9pn'(S| I S,,, Sn-1, iv, * in_ i{ ji J q ()n-d 

o Fn (du I An) Sn-1+ | R(du | An) 
= 

lljn_l =i} n| qij(u) du 

Now the integrated intensity of the process Nij is 
given by 

N(t) 

q9(t =E ASv- Sv-l I s1 *** v-l Y,1, ... , 1 YV-1) 

v=O 

+ 99N(t)+l(t - SN(t) I S1 ' SN(t), Y1, *., YN(t)) 

N(t) s 

= E 1{jVl= i q,(u) du + 1{jN(t)=i} 
V=0 sv- 1 

rF t 

x f qij(u) du = q21(u) Ni(u) du. 

Note added in proof 

One may easily see that the conditions of Theorem 4.4 imply 
those of Theorem 4.3 which further imply the condition of 
Theorem 4.2. This justifies our use of the consistency of 
'P(0, t) in the proofs of Theorems 4.3 and 4.4. 
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