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Paging Inspector Sands:  
The Costs of Public Information†

By Sacha Kapoor and Arvind Magesan*

We exploit the introduction of pedestrian countdown signals—timers 
that indicate when traffic lights will change—to evaluate a policy 
that improves the information of all market participants. We find 
that although countdown signals reduce the number of pedestrians 
struck by automobiles, they increase the number of collisions between 
automobiles. They also cause more collisions overall, implying that 
welfare gains can be attained by hiding the information from drivers. 
Whereas most empirical studies on the role of information in markets 
suggest that asymmetric information reduces welfare, we conclude that 
asymmetric information can, in fact, improve it. (JEL D82, D83, R41)

Few know who Inspector Sands is, and no one has ever met him. This is for good 
reason. Theater companies in the United Kingdom are believed to use the code 

name “Inspector Sands” in order to alert ushers to pending emergencies, such as 
fires and bomb threats, without inciting panic among their patrons.1 When theater 
staff learn of a fire, for example, they page Inspector Sands to the fire’s location. 
When ushers arrive they can put out the fire or help to evacuate the premises in a 
discrete and orderly manner. By ensuring the threat remains hidden from the public 
eye, the code name allows ushers to complete the tasks without having to deal with 
panicked crowds. While paging Inspector Sands is the sensible course of action in a 
crowded theater, there are situations where shouting “fire” is the more sensible thing 
to do.2 When the theater has few patrons, for example, shouting fire likely ensures 
the patrons escape the emergency unscathed. The policy choices—paging Inspector 

1 Many believe the code name is still used by public transit authorities in the United Kingdom. An Internet 
search of the phrase “Inspector Sands” yields, for example, several reports of Inspector Sands being paged in the 
subways of London.

2 Shouting “fire,” even in the case of a false alarm, can have disastrous consequences for public safety. In several 
instances, false alarms alone have caused large-scale injury and death. In one recent example, 168 people died after 
visitors to a Hindu Temple in India became hysterical upon learning of a bomb threat in the area (See “Bomb Threat 
Rumors Blamed for India Stampede That Killed 168,” Fox News, October 1, 2008, accessed December 7, 2013, 
http://www.foxnews.com/story/2008/10/01/bomb-threat-rumors-blamed-for-india-stampede-that-killed-168/).
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Sands or shouting fire—represent the extremes of what policymakers can do when 
they have private information about the state of the world. The dilemma for the poli-
cymaker is in determining when one policy is more sensible than the other.

The resolution to the dilemma hinges on identifying the potential for negative 
externalities to outweigh individual gains from having better information. Shouting 
fire improves welfare because it allows individuals to make better decisions from the 
perspective of their own self interest. In a crowded theater, patrons can run for the 
exits. Shouting fire reduces welfare, on the other hand, because it may induce indi-
viduals to physically harm one another. When the individual gains are expected to 
outweigh the negative externalities, full disclosure is the smart policy. When nega-
tive externalities are expected to dominate, withholding information is a better idea.3

In this paper, we draw on a large-scale natural experiment to study the effects of 
shouting fire or, in other words, the effects of providing the public with information 
about the state of the world. Specifically, we evaluate the effects of pedestrian count-
down signals—timers that indicate when traffic lights will change—on the behavior 
and safety of road users. Although the timers were originally intended for pedestrian 
use only, they are visible to all who transit an intersection. The timers therefore 
increase the information that each user of the intersection has about the time until a 
light change. In turn, we exploit the setting to quantify the overall effects of public 
information as well as to address questions about whether and how policymakers 
should reveal their private information to the public.

In addition to providing a context in which to study the role of public informa-
tion, the introduction of pedestrian countdown signals is itself an issue of significant 
policy relevance. The growing prevalence of pedestrian countdown signals in major 
cities worldwide is consistent with a belief in their ability to improve public safety.4 
As pedestrian countdown signals become more commonplace at intersections of 
major cities in the United States and the rest of the world, it is important to have a 
clear understanding of their impact on public safety.

There is an analogy between the situation we consider here and the ones typi-
cally faced by policymakers. In a typical case, agents prefer the right of way to 
access a resource. They can pursue it aggressively, in order to bypass others and 
be the first to obtain the resource. Or they can pursue it passively, waiting and tak-
ing the risk of not getting the resource in time. The worst possible outcome has all 
individuals aggressively pursuing the right of way. This is especially true for vulner-
able (or physically weaker) individuals, as they are unlikely to obtain the resource 
when everyone pursues it aggressively. In the case of a crowded theater on fire, the 

3 This dilemma also arises in settings that are commonly studied by economists. For instance, Stiglitz (2002) 
makes an analogy between announcing a fire in a crowded theater and bank runs. He identifies an IMF announce-
ment about the closure of several banks, where the IMF did not announce which banks were closing, as a cause of 
the run on banks that led to the 1997–1998 Indonesian banking crisis. While the IMF announcement gave people a 
chance the withdraw their funds before the closures, it also increased the chance that everyone would try to do so at 
the same time. Because banks only keep some of their deposits on reserve, some people were left standing in line 
when the banks ran out of money.

4 Major cities that have adopted pedestrian countdown signals include New York, London, Toronto, Chicago, 
Boston, Los Angeles, San Francisco, Bangkok, Singapore, Mexico City, Tokyo, Seoul, Mumbai, New Delhi, Paris, 
and Shanghai. Moreover, the US Department of Transportation estimates that, among the 33,000 fatalities caused 
by motor vehicle crashes in 2010, more than 20 percent happened at intersections (for more details, see http://www-
nrd.nhtsa.dot.gov/Pubs/811552.pdf).

http://www-nrd.nhtsa.dot.gov/Pubs/811552.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811552.pdf
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resource is safe passage through the exits. If individuals yield the right of way, they 
will not escape immediately (there is some risk of being in the theater too long) but 
they avoid a stampede to the exit. The vulnerable individuals in this case are the 
elderly, disabled, women, and children, while the less vulnerable are young adult 
males.5 In our setting, the resource is safe passage through the intersection. If indi-
viduals yield the right of way, they will not transit the intersection immediately and 
may have to sit through a red light, but they avoid a collision. Drivers are less vul-
nerable than pedestrians and cyclists, as they are protected by the car they drive in.6

Our venue for assessing the impact of pedestrian countdown signals is the city of 
Toronto. The venue has several features that are particularly useful for the present 
study. The first is that decisions about where and when to install countdowns were 
based on cost considerations rather than the collision history of each intersection. 
As a result, the installations provide exogenous variation for identifying the effects 
on the behavior and safety of road users. The second is that the installations were 
gradual and eventually covered every eligible intersection in the entire city. This 
allows us to compare nearby intersections with and without a countdown at the same 
time. That countdown signals eventually covered the entire city lessens concerns 
that intersections with countdowns are, in some inadvertent and unseen way, differ-
ent from ones without. The third is that the decision to adopt pedestrian countdown 
signals was unrelated to the collision history of the city as a whole. The decision to 
adopt the signals was incidental to a citywide initiative to refit existing streetlights 
with more energy-efficient lamps. The city decided that including countdown timers 
at this stage was less expensive than installing them at a later date. Because there 
was nothing specific about the collision history of Toronto that led to the adoption, 
our conclusions should apply to other settings where policymakers are deciding 
whether they should share information with the public.

Our empirical analysis reveals that countdown signals resulted in about a 5 per-
cent increase in collisions per month at the average intersection. The effect cor-
responds to approximately 21.5 more collisions citywide per month. The data also 
reveals starkly different effects for collisions involving pedestrians and those involv-
ing automobiles only. Specifically, although they reduce the number of pedestri-
ans struck by automobiles, countdowns increase the number of collisions between 
automobiles. That the total number of collisions increased while collisions involv-
ing pedestrians decreased suggests that pedestrian countdown signals had a very 

5 Another setting where this type of problem arises is one where a government agency is aware of an outbreak of 
infectious disease. In this case, the scarce resource individuals pursue is vaccination. If individuals yield the right of 
way, they wait in line for the vaccination and risk being too late (if the vaccine runs out, for example), but they avoid 
a fight for the vaccine. In addition, there are individuals who are more susceptible to contracting the disease, or are 
at higher risk of serious illness conditional on contracting it. These individuals may not receive the vaccination in 
time unless the less vulnerable yield right of way to them. In order to limit the harmful consequences for public 
health the agency can issue a public warning through all available media. While the warning prevents further spread 
of the disease because it allows people to take precautions that reduce their exposure, it increases the chances that 
individuals pursue the vaccination aggressively.

6 While individuals have similar decision problems in the cases of busy intersections and crowded theaters, there 
are differences in the disclosure options policymakers can choose from. In a crowded theater full disclosure is not 
an option unless the authority can, at the same time, regulate interactions among patrons and, in particular, the order 
in which they exit. In these regards, our study speaks to optimal disclosure policies when there are few restrictions 
on options available to policymakers.
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significant effect on driver behavior. In fact, we find that collisions rose largely 
because of an increase in tailgating among drivers, a finding that implies drivers who 
know exactly when traffic lights will change behave more aggressively.

To assess the welfare implications of countdown signals, we consider the effects on 
various types of injuries, various types of collisions, and on the number of pedestrians 
and cars who transit through intersections. We find that although countdowns reduced 
the number of minor injuries among pedestrians, they increased the number of rear 
ends among cars. We show that the number of pedestrians who transit intersections 
with countdowns is the same as or more than the number who transit ones without. 
We also show that the number of cars who transit intersections with countdowns is 
the same as or less than the number who transit ones without. Altogether, the findings 
imply that fewer pedestrians were injured or struck by automobiles for every pedes-
trian on the road and that there were more collisions and rear ends for every car on the 
road. We conclude that welfare gains can be attained by disseminating information to 
pedestrians and hiding it from drivers, perhaps by announcing the countdown through 
a speaker that pedestrians can hear but approaching drivers can not.

I.  Related Literature

The present study contributes to the empirical literature on the role of informa-
tion in markets. Most existing studies analyze the effect of policies that increase 
the information that participants on one side of a market have about participants on 
the other side (Ippolito and Mathios 1990; Dranove et al. 2003; and Jin and Leslie 
2003).7 We instead focus on the impact of a policy which increases the information 
that participants on all sides have about an event that is in their common interest.8 In 
these regards, our finding that countdowns increase collisions between drivers com-
plements those of Dranove et al. (2003), who also show that information can reduce 
welfare. Dranove et al. (2003) considers the effects of publicly disclosing the patient 
health outcomes—through, e.g., cardiac surgery report cards—of physicians and 
hospitals. They find that disclosure worsens outcomes for at-risk patients, because it 
induces physicians and hospitals to selectively choose the patients they treat. While 
their paper considers the adverse effects of disclosure on who agents interact with, 
we explore the adverse effects of disclosure on how agents interact with each other.9

Our finding that information benefited pedestrians at the expense of drivers speaks 
to questions about the role of transparency in public policy. Specifically, we provide 
an empirical contribution to the philosophical debate over whether governments 
with private information should share it with the public.10 While the debate focuses 

7 For papers that study the effect of these policies on consumer choice, see Beaulieu (2002); Wedig and Tai-
Seale (2002); Jin and Sorensen (2006); Dafny and Dranove (2008); Dranove and Sfekas (2008); Hastings and 
Weinstein (2008); Bundorf et al. (2009); and Dellavigna and Pollet (2009). For papers that study their effect on the 
behavior of organizations or of their representatives, see Jacob and Levitt (2003) and Jacob (2005). Dranove and 
Jin (2010) provides an extensive review of these and other papers.

8 In this way, our paper also relates to a large finance literature on the effects of macroeconomic news on the 
behavior of investors. See Tetlock (2010) for a recent example.

9 The idea that public information can worsen outcomes is known to theorists. Morris and Shin (2002), for 
example, shows that public information can have adverse welfare effects when agents also have private information.

10 An early summary of the broad debate can be found in Stiglitz (2002).
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on whether they should share or hide information, our findings point to the impor-
tance of considering who they share information with.

II.  Data and Context

Busy intersections have several features which are essential for studying the 
effects of information disclosure. First, the prospect of an undesirable event—the 
light change—is commonplace for millions of road users each day. Bomb threats, 
fires, and outbreaks of infectious disease are rare and unpredictable, which ham-
pers the accuracy of the empirical conclusions that one could draw in these con-
texts. Second, there is variation in what road users know about light changes. 
Before countdown signals were introduced they were left to guess when the light 
would change. After the introduction, they knew exactly when it would change. 
We observe behavior in both of these situations. Third, we can assess whether full 
disclosure has different implications for the vulnerable and less vulnerable, as well 
as whether there are more winners than losers. This is a challenge in other strategic 
settings because it is difficult either to identify the winners and losers or to quantify 
the separate effects that full disclosure has on different individuals. Since our data 
allows us to distinguish drivers from pedestrians we can assess the separate effects 
of full disclosure for different road users.11 As a result, the findings can speak to the 
appropriateness of policies that disclose information asymmetrically.12

A. How Countdown Signals Inform Road Users

Figure 1 displays walk signals in the city of Toronto before and after pedestrian 
countdown signals were introduced. The flashing hand indicates to all road users 
that a yellow light for adjacent vehicular traffic is imminent. The timer begins when 
the orange hand starts to flash. It counts the time between the solid “Walk” signal, 
as represented by a walking stick figure, and the solid “Don’t Walk” signal, as rep-
resented by a solid orange hand. The time counted is independent of the time of 
day, but it is longer at wider crosswalks.13, 14 Importantly, the time counted at each 
crosswalk was unchanged when the countdowns were introduced.

11 Much like busy intersections, in crowded theaters the benefits from disclosure differ from individual to indi-
vidual. In crowded theaters there are young children, elderly, and disabled. These vulnerable individuals may not 
escape safely unless the less vulnerable, for example young adult males, yield right of way to them. This reality is 
consistent with the social norm of “women and children first” in times of emergency.

12 Early warning systems (for the onset of natural disasters) are, in contrast with crowded theaters, a context 
where asymmetric disclosure is an option for policymakers. In this context the resource is safe passage away from 
the disaster. As with crowded theaters, if individuals yield the right of way then they will not escape immediately, 
but they avoid the mass exodus of people trying to escape the disaster. Some individuals, such as those residing far 
from safe shelter, are more vulnerable than others. These individuals may not escape unless the less vulnerable—indi-
viduals who live closer to safe shelter—yield right of way to them. To limit the harmful effects on public safety the 
authority can inform and evacuate the more at-risk individuals ahead of others. This is a strategy often recommended 
by disaster planners (see page 49 of http://eprints.jcu.edu.au/19780/1/19780_Goudie_2007.pdf for more details).

13 In Toronto, the duration of vehicular signals (green and red lights) is based on the time of day. These durations 
are based on historical traffic volumes in each direction at different times of the day.

14 At intersections with side streets, vehicles and pedestrians can affect countdown signals along side streets. 
These intersections have sensors that detect the presence of vehicular traffic along side streets. Pedestrians along 
side streets can use push buttons to initiate the timers.

http://eprints.jcu.edu.au/19780/1/19780_Goudie_2007.pdf
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B. The Natural Experiment

The adoption of countdown signals was incidental to a citywide initiative that ret-
rofits pedestrian and vehicular displays with more energy-efficient LED lamps.15, 16 
The city’s view was that installing countdowns alongside LED lamp installations 
was more cost effective than retrofitting the LED lamps with countdowns at a later 
date. As such, the original motivation for the adoption of countdowns was unrelated 
to the city’s history of traffic collisions, fatalities, and injuries.17

Because adopting countdowns was secondary to the city’s goal to reduce the 
energy costs of traffic signals as well as C​O​2​ emissions, the timing and locations of 
installations was unrelated to the collision history at each intersection. The installa-
tion dates and locations for the LED lamps were based on cost considerations and, 
moreover, were largely chosen before countdowns were included in the city’s initia-
tive. The first countdown was installed in November of 2006. In the period that we 
study the last countdown was installed in December of 2008.

Figure 2 graphically depicts the evolution of countdown installations over time. 
The figure supports the idea that installation dates and locations were motivated by 
cost considerations, as initial installations were geographically concentrated in a 

15 The initiative was actually part of broader program to retrofit all city streetlights with more energy-efficient 
lamps.

16 Originally, the streetlights were fitted with incandescent lamps. The program retrofits streetlights with Light 
Emitting Diode (LED) lamps. LED lamps use fewer watts to produce the same luminescence as incandescent 
lamps.

17 These claims are supported by official city documents. These documents can be found at the city’s website: 
http://www.toronto.ca.

Figure 1. Flashing Don’t Walk Signal, with and without Countdown

http://www.toronto.ca
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few central locations and diffused outwards thereafter. It supports the idea because 
geographically concentrating the installations is likely to reduce their costs.

C. A Description of the Data

We complement the rich variation generated by the city’s natural experiment with 
detailed retrospective monthly collisions data collected over a five-year span. The 
data describes every collision that occurred in the city, including injuries and fatali-
ties to the involved parties, the precise location of the collision, and which party 
was at fault and for what reason. We exploit the wealth of detail to identify specific 
mechanisms that drive the increase in collisions. We investigate whether count-
downs provide road users with information that they use to act more aggressively 
and whether increased acts of aggression harm others on the road.

Panel A. 2006

Panel C. 2008

Panel B. 2007

Figure 2. Countdown Installations in the City of Toronto
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Our sample is an extract from the internal collisions database maintained by the 
City’s Transportation Services Division. The database contains information on all 
collisions that occurred between January, 2004 and December, 2008.18 We restrict 
the sample to collisions that occurred at an intersection with traffic signals. The col-
lisions data includes information on the parties involved, for example whether they 
were a cyclist, driver, or pedestrian, and whether they incurred an injury or fatality,19 
which party was at fault and why, as well as the precise time and location of the 
collision. Our analysis rests on monthly level observations.20 Overall, we observe 
1,794 intersections during a five-year period for a total of 107,640 observations.21

Table 1 provides summary counts for the main variables used in our empirical 
analysis, which illustrate clear downward trends in several variables of interest. The 
total number of collisions decreased from 5,058 in 2004 to 4,194 in 2008, seem-
ingly driven by a sharp decline in driver-driver collisions. While fatalities and major 
injuries are relatively stable, minor injuries decline from 267 in 2004 to 212 in 2008. 
Later we provide evidence which suggests the trends in collisions and injuries sim-
ply reflect a downward trend in traffic volumes.

III.  Empirical Specification and Identification

The baseline specification that we consider is given by

(1) 	​  y​it​  =  ​α​i​  +  β I(t  ≥  ​τ​i​)  +  ​X​it​ Γ  +  ​γ​t​  +  ​ϵ​it​ .

18 Collision information is retrospectively based on police reports.
19 The data classifies fatalities as those persons who die within 366 days of a collision.
20 We focused on monthly data because the process of obtaining estimates with daily data is computationally 

extremely burdensome, even in the linear panel data framework. Moreover, the monthly data still allows us to cred-
ibly answer a causal question of interest.

21 We excluded intersections without traffic signals at the start of our sample period because the decision to 
install signals is endogenous to collisions. We also excluded ones that never receive a countdown. These intersec-
tions are typically located near emergency response operations, such as firehalls, where traffic signals are fitted with 
preemptive systems that facilitate quicker response times. The intersections did not receive countdowns because 
preemptive systems confuse the countdown’s timing.

Table 1—Descriptive Statistics—Counts by Year

Year

2004 2005 2006 2007 2008

Collisions 5,058 5,166 4,704 4,500 4,194
  Driver-pedestrian 266 322 301 296 295
  Driver-cyclist 124 127 136 128 129
  Driver-driver 4,250 4,185 3,897 3,740 3,407

Fatalities 8 10 10 13 10
  Major injuries 67 95 76 82 63
  Minor injuries 267 244 232 243 212
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​y​it​ is the number of collisions at intersection i at time t.22 The index t counts months, 
starting in January 2004 and ending in December 2008. ​α​i​ controls for time-invari-
ant differences in the propensity for collisions across intersections, such as those 
that are generated by the number of lanes or the posted speed limits. ​τ​i​ is the instal-
lation date for intersection i. I(t ≥ ​τ​i​) is a binary variable that indicates whether 
the current date equals or exceeds the installation date, so that intersections with 
I(t ≥ ​τ​i​) = 1 are in the treatment group. ​γ​t​ is a time-specific intercept. It allows for 
intersection-invariant differences across time in the propensity for collision, such 
as those that are generated by bad weather. ​ϵ​it​ is a random variable that measures 
idiosyncratic changes in collisions.

The random variables ​α​i​ and ​γ​t​ control for possible selection effects. For exam-
ple, the city may have (inadvertently) installed the first countdowns at locations 
with collision propensities that fail to represent the typical intersection. In this case, 
intersection specific factors explain both observed installation decisions as well as 
observed collisions—excluding ​α​i​ would result in a biased estimate of the treatment 
effect. On the other hand, ​γ​t​ controls for time-based selection effects, in addition to 
trends in collisions. Specifically, it controls for the probability that an intersection 
receives a countdown, a probability that is increasing with time. Excluding ​γ​t​ would 
likely result in a (downward) bias in the estimated treatment effect.

Finally, although the pattern of installation indicates otherwise, ​X​it​ includes con-
trols that allow for the possibility that intersections with a recent history of colli-
sions are treated earlier than others. In particular, ​X​it​ includes lagged collisions. We 
show in the next section the evidence supports the city’s claim that installations were 
unrelated to collision histories at intersections.

IV.  Results

A. Unintended Consequences

We study the unintended consequences of pedestrian countdown signals. Table 2 
presents estimates of the effect of countdown signals on collisions. The main find-
ing is that countdown signals result in more collisions, once intersection- and 
time-specific factors are accounted for. The estimate in column 3 shows that there 

22 We use OLS fixed effects (FE) to estimate our specifications. We do so because it is the only available estima-
tion method that credibly delivers consistent estimates of the treatment effect. In the OLS FE framework, we can 
flexibly account for permanent unobserved differences across intersections. In our context the count data framework 
is not applicable. This is because the standard Poisson FE estimator is not well-suited for handling counts with 
excess zeros. With excess zeros, the Poisson estimation procedure drops the individuals that never experience the 
event. In our context, the procedure drops almost half of the intersections in our sample and, ultimately, results in 
a substantial selection problem as well as a substantial loss of statistical power. Not including fixed effects is not a 
viable option either, as a key part of our identification strategy is being able to control for permanent, unobserved 
differences across intersections. To alleviate concerns about the appropriateness of our standard errors, in the online 
Appendix we consider a couple of alternative strategies. First, we consider the most common alternative method 
for approximating standard errors, bootstrapping (see Wooldridge 2010, chapter 12 for details). The validity of 
bootstrapped standard errors and the resulting test statistics does not rely on the assumption of normality of the 
regression model error (an assumption which may be violated with count data). Second, we consider a simple 
transformation of our outcome variable to a continuous measure. We redefine the outcome of interest to be the ratio 
of number of collisions to total traffic flow through an intersection. Both strategies strongly reinforce the robustness 
of our results.
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were 0.012 more collisions per month at the average intersection, where the esti-
mate is statistically significant at the 5 percent level against a two-sided alternative. 
The increase in collisions represents a more than 5 percent increase over the mean 
number of collisions, which was 0.229 before countdown signals were introduced. 
The sign change when we include time-specific controls (columns 2 and 3) are con-
sistent with a pre-existing downward trend in collisions23 as well as with an upward 
trend in the probability that an intersection is assigned a countdown. Table 2 also 
shows that lagged collisions matter little for the estimated effect of countdowns.24, 25

To further understand why there were more collisions at intersections with a 
countdown, we consider the countdown’s effect on three classes of collisions: ones 
involving only drivers; ones involving drivers and pedestrians; ones involving driv-
ers and cyclists. The estimates can be found in Table 3. The evidence in column 1 
suggests countdowns resulted in more collisions between drivers. We estimate 0.012 
( p < 0.05) more driver-driver collisions per month at the average intersection after 
countdowns were introduced.26

Table 3 also illustrates that countdowns resulted in fewer collisions between 
drivers and pedestrians. The estimate in column 2 suggests that there were 0.0032 
( p < 0.1) fewer driver-pedestrian collisions per month at the average intersection 

23 This result illustrates the benefits of a relatively long history of data from before the first installation. These 
data allow us to more accurately capture time trends that existed before countdowns were introduced.

24 In the online Appendix, we show that the estimates are robust to many more lags of the dependent variable.
25 To be certain of our identifying assumption, we explicitly tested that the probability of countdown assignment 

is unrelated to the collision history at the intersection. Specifically, using only intersection-month observations 
where ​T​it−1​ = 0, we use a probit to estimate the following:

​T​it​  =  I (​β​0​  + ​ β​1​ histor​y​i​  + ​ δ​t​  + ​ ε​it​  ≥  0),

where ​δ​t​ is unobserved time specific heterogeneity. histor​y​i​ is the accident history of an intersection, as measured by 
the cumulative number of collisions at the intersection in the years preceding the city wide rollout of countdowns 
(2004 and 2005). The approach yields an estimated effect for ​β​1​ of  −0.0008 with an estimated standard error of 
0.0010. The estimate supports the exogeneity of countdown assignment to historical accident patterns.

26 A low ​R​2​ arises in our context because collisions are highly idiosyncratic. We note that, under the assumption 
that installations (where and when) are exogenously assigned to intersections, the low ​R​2​ does not bear on our abil-
ity to interpret the results as causal.

Table 2—Collisions and Pedestrian Countdown Signals

(1) (2) (3) (4)

Pedestrian countdown −0.055*** −0.022*** 0.012** 0.011*
Signal activated (0.006) (0.004) (0.006) (0.006)
Controls
  Intersection No Yes Yes Yes
  Month-year No No Yes Yes
  Lagged collisions No No No Yes

 ​R​2​ 0.001 0.003 0.004 0.003
Intersections 1,794 1,794 1,794 1,794

Observations 107,640 107,640 107,640 105,846

Notes: The dependent variable is number of collisions. Robust standard errors clustered at the 
intersection level.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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after countdowns were introduced. On the other hand, the estimate in column 3 sug-
gests that countdowns had a positive but statistically negligible (at the 10 percent 
level) impact on collisions between drivers and cyclists.

Three explanations might justify the increase in collisions between drivers. The 
first, is that being informed about the precise time until a light change allows drivers to 
become selectively aggressive in their approach to an intersection. Specifically, in the 
effort to avoid stop lights, drivers might accelerate when they know just enough time 
remains than when they don’t.27 The second explanation is that countdowns distract 
drivers. They divert the driver’s attention away from the road and, in turn, increase 
the chances that a collision ensues. The third is that countdowns do not directly 
cause collisions, rather they indirectly cause them through third-party responses to 
the countdown. The countdowns alter the behavior of cyclists and pedestrians, and in 
an effort to avoid these third parties, drivers collide with each other.

B. More Information Means More Aggression

We show that information about light changes induced drivers to act more aggres-
sively. Table 4 provides estimates of the effect on collisions where at least one driver 
was exceeding the speed limit or tailgating.28, 29 While the estimate of column 1 
suggests a small and statistically insignificant impact on speeding, the estimate of 
column 2 suggests countdowns resulted in 0.0074 ( p < 0.05) more collisions where 
at least one driver was tailgating another. As a result, the evidence supports a story 
where drivers act more aggressively when they are informed about the time until 
light changes.

27 In the online Appendix, we show that in the context of a very simple textbook example of interactions between 
drivers (see “Approaching Cars” on page 130 of Osborne 2004 that providing drivers with information about the 
time until a light change causes drivers to approach traffic lights more aggressively on average).

28 A driver is tailgating if they were reported as following another driver too closely.
29 Tailgating is widely considered the model of aggressive behavior, and much effort, both by way of govern-

ment policy and nongovernment initiatives, has gone into reducing tailgating among drivers. Examples of these 
efforts can be found at http://www.stopandgo.org/research/aggressive/taxca.pdf and http://www.dot.state.mn.us/
trafficeng/tailgating/Tailgating-finalreport.pdf.

Table 3—Collision Involvements and Conditions

Collisions involving:

Driver-driver Driver-pedestrian Driver-cyclist

Pedestrian countdown 0.0117** −0.0032** 0.0014
Signal activated (0.0052) (0.0015) (0.0011)
​R​2​ 0.004 0.002 0.003
Intersections 1,794 1,794 1,794

Observations 107,640 107,640 107,640

Notes: Robust standard errors clustered at the intersection level. All regressions include fixed 
effects for the intersection and month-year.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level. 

http://www.stopandgo.org/research/aggressive/taxca.pdf
http://www.dot.state.mn.us/trafficeng/tailgating/Tailgating-finalreport.pdf
http://www.dot.state.mn.us/trafficeng/tailgating/Tailgating-finalreport.pdf


Vol. 6 No. 1� 103kapoor and magesan: the costs of public information

It’s More than Just Inattention.—We consider the possibility that countdown sig-
nals distracted drivers. Specifically, we consider whether collisions increase because 
countdown signals divert driver attention away from the road. To do so, we com-
pare and contrast the lasting effects of collisions with the more immediate ones. If 
countdown signals distracted drivers, then their positive effect on collisions should 
be more pronounced in the periods immediately after their installation. Initially, 
because drivers are unsure as to how to best use the countdown signals, it further 
distracts their attention from the road, and collision becomes more likely. As time 
passes, countdowns impose less of a burden on driver attention because drivers 
adjust to the new environment they face. Consequently, the chance of a collision 
should decrease.

To evaluate these alternative models, we use the following specification to esti-
mate short-run and long-run treatment effects:

(2) 	​ y​it​  =  ​α​i​ + ​∑​ 
k=0

​ 
K

  ​ ​β​k​ I (t  =  ​τ​i​ + k) + ​β​K+1​ I (t  >  ​τ​i​ + K) + ​X​it​ Γ + ​γ​t​ + ​ϵ​it​ .

The coefficients { ​β​k​​}​ k=0​ K+1​ describe the collision trajectory that follows a countdown 
installation. The first K terms describe the transition—they capture the average 
effect of countdowns in a month following installation relative to the effect before 
the first installation. The last term captures the “permanent” effects. This specifica-
tion is less restrictive than the base specification, as I(t ≥ ​τ​i​) = ​∑​ k=0​ 

K
  ​ I(t = ​τ​i​ + k) +  

I(t > ​τ​i​ + K ). We also include leads of I(t = ​τ​i​) in ​X​it​ to evaluate the role of collision 
histories in treatment effect estimates30—the leads describe the collision trajectory 
before a countdown installation.31

30 Formally, the leads are I(t = ​τ​i​ − 1), I(t = ​τ​i​ − 2), … , I(t = ​τ​i​ − s) for some s ≥ 1.
31 While this approach ostensibly resembles an event study, conceptually the two approaches differ. An event 

study effectively evaluates the effects of a one time event that is temporary, but that may have lasting effects. 
Examples of such events include worker displacement (Jacobson, LaLonde, and Sullivan 1993), which may 
adversely affect future earnings, or EPA plant inspections (Hanna and Oliva 2010), which may have lasting effects 
on plant emissions. We evaluate the effects of a one time event that is permanent, where these effects may vary from 
period to period. Specification 2 is appropriate for both cases.

Table 4—Driver Actions and Conditions

Collisions where a driver:

Speeds Tailgates

Pedestrian countdown 0.0001 0.0074**
Signal activated (0.0002) (0.0020)
​R​2​ 0.0005 0.0038
Intersections 1,794 1,794

Observations 107,640 107,640

Notes: Robust standard errors clustered at the intersection level. All regressions include fixed 
effects for the intersection and month-year.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level. 
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In Table 5, we present estimates of equation (2) for different values of K. Two 
things are apparent from these estimates. The first is that, as we lengthen the short 
run, the countdown’s estimated long run effect grows in magnitude. The estimated 
long run effect ranges from 0.029 more collisions on average in column 1 to 0.045 
more in column 5. Each of these are statistically significant at the 1 percent level. 
The second is that the estimated short run effects of countdowns, while varying 
in magnitude and statistical significance, appear somewhat smaller than those esti-
mated for the long run. This is particularly true for the periods immediately follow-
ing the initial installations.

We plot the estimates from column 5 of Table 5 in Figure 3. The solid line plots the 
estimates for leads to the left of the red line and the estimates for lags to the right. The 
dashed lines plot the 90 percent confidence interval. Figure 3 illustrates that in all but 
one case we fail to reject the hypothesis that collisions followed their usual patterns in 
the months leading up to a countdown installation (because zero enters the confidence 
interval only once). In contrast, it supports the hypothesis that collisions departed from 
their usual pattern when road users were informed about the time until light changes.

Table 5—Collisions and Pedestrian Countdown Signals—Dynamic Treatment Effects

Months after installation (1) (2) (3) (4) (5)

0 months 0.015 0.017 0.019 0.018 0.023*
(0.012) (0.012) (0.012) (0.012) (0.012)

1 month 0.005 0.007 0.009 0.009 0.013
(0.013) (0.013) (0.013) (0.013) (0.013)

2 months −0.012 −0.010 −0.008 −0.008 −0.004
(0.011) (0.011) (0.011) (0.011) (0.011)

3 months 0.016 0.018 0.020* 0.020 0.024*
(0.012) (0.012) (0.012) (0.012) (0.012)

4 months 0.012 0.014 0.017 0.016 0.020
(0.013) (0.013) (0.013) (0.014) (0.014)

5 months 0.002 0.005 0.007 0.007 0.011
(0.013) (0.013) (0.013) (0.013) (0.014)

6 months 0.019 0.021 0.021 0.025*
(0.014) (0.014) (0.014) (0.015)

7 months 0.034** 0.033** 0.038**
(0.015) (0.015) (0.016)

8 months 0.038** 0.043**
(0.007) (0.017)

9 months 0.029*
(0.017)

After last month in specification 0.029*** 0.034*** 0.038*** 0.037*** 0.045***
(0.008) (0.009) (0.010) (0.010) (0.011)

Intersections 1,794 1,794 1,794 1,794 1,794

Observations 107,640 107,640 107,640 107,640 107,640

p-value for F-test that leads don’t matter 0.15 0.19 0.22 0.30 0.21

Notes: The dependent variable is number of collisions. Robust standard errors clustered at the intersection level. 
Regressions control for intersection and month-year fixed effects. They also include leads for first installation date.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level. 



Vol. 6 No. 1� 105kapoor and magesan: the costs of public information

The evidence fails to support the hypothesis that countdown signals distracted 
drivers. The results are unsurprising, mostly because a situation where countdowns 
cause inattention seems highly unlikely. This is because countdown signals and traf-
fic lights are in the same line of sight for approaching drivers and because, conse-
quently, drivers can use the information countdowns provide without having to look 
away from the traffic light. On the other hand, the evidence is consistent with the 
hypothesis that collisions increased because drivers became more aggressive when 
they were informed about the time until a light change. Specifically, if the informa-
tion enables road users to better respond to their circumstances, and road users learn 
over time how timers can best be used to avoid getting caught waiting at intersec-
tions, then we would expect a more pronounced permanent effect of countdown 
signals and a less pronounced temporary one.32

It’s Not Just Third-Party Effects.—We consider the possibility that changes in 
third-party behaviors explain the increase in driver-driver collisions. In particular, 
using more detailed collision information, we explore whether collisions among 
drivers increased because countdowns induced third parties to enter intersections 
at inopportune times. We argue that the estimates from column 2 of Table 3 and 

32 To elaborate, we interpret the findings in Tables 5–7 as evidence of drivers becoming more aggressive as they 
familiarize themselves with timers. Formally, we interpret the findings as evidence of a transition from one equi-
librium to another following the installation of a countdown. Before the countdown is installed, the less-aggressive 
behavior of drivers is consistent with one type of equilibrium, implying a lower equilibrium probability of accident. 
Immediately after the countdown is installed, there is a period where individuals learn about how the countdown 
can work to their advantage. Over time, the behavior of drivers transitions to a new equilibrium. One where drivers 
are more aggressive and there is a higher equilibrium probability of accident. Our feeling is the new equilibrium, on 
average, appears three months after treatment and stabilizes six months after.
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Figure 3. Pedestrian Countdown Signals and Their Effects on Collisions
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Table 6 suggest the increase in collisions is unrelated to the behavior of third-party 
pedestrians.

If third-party pedestrians are the source of more driver-driver collisions, it should 
be the case that pedestrians are placing themselves in more risky situations. The esti-
mates from column 2 of Table 3 and from Table 6 suggest otherwise. The estimates 
in Table 3, which show that countdowns resulted in fewer driver-pedestrian colli-
sions, suggest that pedestrians might act more cautiously after the countdown instal-
lation.33 The estimates from Table 6 provide further support for this idea, as they 
show that in interactions where drivers are more likely to meet pedestrians (turns) 
the rise in collisions is smaller than in ones where they’re not. Columns 1 and 2 sug-
gest there were 0.0022 more collisions among drivers when they make right or left 
turns, though only the coefficient for right turns is statistically significant. Column 3 
suggests there were 0.0075 more collisions ( p < 0.1) among drivers where at least 
one driver was traveling straight through the intersection, a driving maneuver that is 
unlikely to involve third parties.

V.  Implications for Social Welfare

We approach the welfare effects of countdowns from three directions. First, we 
consider the effect of countdowns on various types of collisions, such as rear ends 
and sideswipes. Second, we consider the impact on fatalities and injuries. Third, we 
study the effect on traffic and pedestrian volumes at intersections. Our major find-
ings are that countdowns resulted in more rear ends, fewer minor injuries, and had 
a negligible effect on traffic and pedestrian volumes. The findings suggest that the 
welfare impacts hinge on a comparison of the additional costs of rear ends with the 
benefits of fewer minor injuries.

33 The particular piece of evidence is also consistent with an alternative hypothesis. Under the alternative, driv-
ers act more aggressively with each other, but less aggressively towards pedestrians, when informed about the time 
until a light change.

Table 6—Third-Party Effects

Collisions where driver:

Turns left Turns right Not turning

Pedestrian countdown 0.0023 0.0024** 0.0075*
Signal activated (0.0027) (0.0012) (0.0041)
​R​2​ 0.0019 0.0010 0.0028
Intersections 1,794 1,794 1,794

Observations 107,640 107,640 107,640

Notes: Robust standard errors clustered at the intersection level. All regressions include fixed 
effects for the intersection and month-year.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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A. Injuries and Rear Ends

Columns 1–5 of Table 7 suggest the costs of pedestrian countdown signals are 
comprised primarily by the costs of more rear ends. These columns provide esti-
mates of the countdown’s effect on various types of collisions, those where at least 
one driver: enters the intersection; collides with another at an angle; rear ends 
another driver; sideswipes another driver; or was turning when a collision occurred. 
The estimates show that countdowns resulted in 0.0108 more collisions per month 
( p < 0.05) where one driver rear ends another at the average intersection.

Columns 6–8 of Table 7 suggests the benefits of pedestrian countdown signals are 
comprised primarily by the benefits of fewer minor injuries. Column 8 shows count-
downs resulted in 0.0027 fewer minor injuries per month at the average intersection. 
This finding is consistent with our finding in column 2 of Table 3 of a reduction in 
collisions between pedestrians and drivers, because most collisions involving pedes-
trians and drivers result in minor injuries.

B. Traffic and Pedestrian Flows

In order to more properly assess the welfare implications of reducing road-user 
uncertainty about light changes, we consider the effects of countdown signals on 
vehicular and foot traffic at the intersections in our sample.34 The specific goal is 
to determine whether countdown signals resulted in fewer pedestrian-driver col-
lisions for every pedestrian on the road and whether they resulted in more colli-
sions between cars for every car on the road. The finding that countdowns reduced 
driver-pedestrian collisions has positive welfare implications when the same or more 
pedestrians use intersections after countdowns were introduced. The implications 
are ambiguous when fewer pedestrians use intersections with countdown signals. 

34 As with the collisions data, the source for the vehicular and foot traffic data is the Transportation Services 
Division of the City of Toronto. The most recent counts for vehicular and foot traffic are found at http://toronto.ca/
open.

Table 7—Collision Types and Injuries

Impact type Injury type

Rear Turning
Entering Angle end Sideswipe movement Fatalities Major Minor

Countdown 0.0003 0.0004 0.0108*** −0.0009 0.0021 −0.0003 0.0006 −0.0027*
  activated (0.0007) (0.0022) (0.0032) (0.0015) (0.0030) (0.0003) (0.0009) (0.0016)
​R​2​ 0.0010 0.0007 0.0023 0.0011 0.0019 0.0005 0.0005 0.0007
Intersections 1,794 1,794 1,794 1,794 1,794 1,794 1,794 1,794

Observations 107,640 107,640 107,640 107,640 107,640 107,640 107,640 107,640

Notes: Robust standard errors clustered at the intersection level. All regressions include fixed effects for the inter-
section and month-year.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.

http://toronto.ca/open
http://toronto.ca/open


108	 American Economic Journal: economic policy� february 2014

Similarly, the finding that countdowns resulted in more driver-driver collisions has 
negative welfare implications when the same or fewer cars use intersections after 
countdowns were introduced. The implications are ambiguous when more cars use 
intersections with countdown signals.

To quantify the rise in collisions, and reduction in minor injuries, relative to the 
flow of road users, we draw on counts of pedestrian and automobile traffic at inter-
sections throughout the city.35 In both cases, we estimate specifications of the form

(3) 	​  V​ it​  =  ​δ​0​  +  ​δ​1​​ T​ it​  +  ​X​it​ π + ​υ​it​  ,

where t is the time of the count, ​V​ it​ represents volume (pedestrian or automobile) 
that passes through intersection i at time t, ​T​ it​ indicates whether a countdown is 
installed, and ​X​it​ controls for time and geographic factors that might affect variation 
in ​V​ it​ and ​T​ it​ . We note that counts are done at different (and irregular) points in time. 
In the case of pedestrians, counts are done only once, while automobile counts are 
done repeatedly for most intersections.36

Table 8 provides estimates of the effect of countdown signals on the number of 
pedestrians transiting intersections. The data reveals three things. The first is that 
columns 3 and 4 show a downward trend in pedestrian traffic across years. This con-
clusion follows because intersections are more likely to have a countdown installed 
in the later years of our sample. The second is that columns 5 and 6 demonstrate that 
excluding geographic factors results in overestimates of the countdown’s effect on 

35 These counts were done for most of the intersections in our study.
36 In fact, for many intersections we have multiple observations from the same time period. This is because at 

separate counts are done for traffic flowing in various directions. At a minimum, this provides another useful source 
of variation for identifying an effect of countdowns on traffic volume.

Table 8—Countdowns and Pedestrian Flow

(1) (2) (3) (4) (5) (6) (7)

Countdown 1,030.50 *** 1,017.06*** 992.32*** 1,812.81*** 1,281.43*** 137.48 −228.44
  activated (129.96) (130.02) (127.89) (293.55) (274.54) (260.47) (669.40)
Controls
  Day of week No Yes Yes Yes Yes Yes Yes
  Month No No Yes Yes Yes Yes Yes
  Year No No No Yes Yes Yes Yes
  N-S/E-W No No No No Yes Yes Yes
  Main street No No No No No Yes Yes
  Side street No No No No No No Yes

​R​2​ 0.02 0.02 0.08 0.11 0.17 0.52 0.81
Intersections 1,912 1,912 1,912 1,912 1,912 1,912 1,912
  (Observations)

Notes: The dependent variable is volume of pedestrians using the intersection over an 8-hour period. Robust stan-
dard errors.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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pedestrian traffic. The third is that pedestrian traffic was unaffected by the presence 
of countdown signals once all of the time and geographic factors are controlled for.

The results for pedestrian traffic as well as the reduction in pedestrian-driver col-
lisions (Table 3) suggest that pedestrians benefited from the introduction of count-
down signals. The estimate in column 7 shows that they benefited because fewer 
pedestrians were struck by automobiles for every pedestrian on the road. A potential 
welfare improvement for pedestrians is unsurprising because a major motivation for 
introducing countdown signals is that they “have been proven to improve pedestrian 
signal understanding, and have particular benefit for vulnerable road users such as 
seniors, children, and mobility-challenged pedestrians.”37 Pedestrians who were ini-
tially reluctant to use intersections may now feel safer doing so, and in fact are safer 
doing so.

We use Table 9 to study the countdown’s effect on the number of cars transiting 
intersections. The estimates suggest at best that countdown signals had a statisti-
cally insignificant effect on the number of automobiles per 24-hour period at the 
average intersection.38 As with pedestrian flows, Table 9 suggests that geographic 
and time factors matter for estimates of the countdown’s effect on automobile 
flows. Specifically, a comparison of columns 3 and 4 reveals a downward trend in  
automobile traffic across years. Similarly, a comparison of columns 5 and 6 demon-
strates that excluding geographic factors results in overestimates of the countdown’s 
effect on automobile traffic.39

37 See http://www.transportation.alberta.ca/.
38 One caveat with this result is that with this data intersections are only observed with countdowns 6 percent 

of the time. However, it’s likely that the number of observations more than compensates for the loss in statistical 
power this asymmetry generates.

39 In contrast with the pedestrian count data, these street indicators fail to distinguish between main and side 
streets. Instead they indicate the street along which the measured flow is traveling (street 1) as well as the intersect-
ing street (street 2).

Table 9—Countdowns and Automobile Flow

(1) (2) (3) (4) (5) (6) (7)

Countdown −1,079.74*** −1,097.60*** −996.12*** 1,479.03*** 1,456.83*** −655.97* −346.34
  activated (389.78) (363.41) (362.41) (459.51) (471.90) (340.79) (224.89)
Controls
  Day of week No Yes Yes Yes Yes Yes Yes
  Month No No Yes Yes Yes Yes Yes
  Year No No No Yes Yes Yes Yes
  N-S/E-W No No No No Yes Yes Yes
  Street 1 No No No No No Yes Yes
  Street 2 No No No No No No Yes

​R​2​ 0.002 0.008 0.05 0.08 0.08 0.65 0.83

Observations 28,996 28,996 28,996 28,996 28,996 28,996 28,996
Intersections 1,637 1,637 1,637 1,637 1,637 1,637 1,637

Notes: The dependent variable is volume of pedestrians using the intersection over a 24-hour period. Robust stan-
dard errors.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.

http://www.transportation.alberta.ca
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The results for automobile traffic as well as the increase in driver-driver colli-
sions (Table 3) suggest that drivers suffered from the introduction of countdown 
signals. The estimate in column 7 shows that they suffered because of more colli-
sions between drivers for every driver on the road. As a result, the data reveals that 
countdowns may have had negative implications for the welfare of drivers who visit 
an intersection.

VI.  Applicability to Other Cities

We assess the broader applicability of our main finding that countdowns cause 
more collisions. Our specific strategy compares the effects of countdowns on col-
lisions at intersections that are historically safe with the effect at intersections that 
are historically dangerous. The comparison allows us to draw inferences about the 
effects of countdowns at intersections in cities with a mix of safe and unsafe intersec-
tions, to cities with many safe intersections, or to cities with many unsafe intersec-
tions. We can draw such inferences because the location and timing of installations 
in Toronto were unrelated to the collision histories of intersections, and because the 
decision to adopt countdowns was unrelated to the collision history of Toronto as a 
whole.

We estimate the specification

(4) 	​  y​it​  =  ​α​i​  +  ​β​1​ I (t  ≥  ​τ​i​)  +  ​β​2​ I (t  ≥  ​τ​i​) ​Z​i​  +  ​X​it​ Γ  +  ​γ​t​  +  ​ϵ​it​ ,

where

 	​  Z​i​  = ​ 
his​t​i​ _ 
vo​l​i​

 ​ .

his​t​i​ is the number of collisions in the (pre-treatment) years 2004–2005, and vo​l​i​ is 
the number of cars transiting through intersection i.40 ​Z​i​ is then the number of colli-
sions per 1,000 cars that travel through the intersection. Estimates of the specifica-
tion are found in Table 10.

The estimates reveal that countdowns make life at historically safe intersections 
more dangerous. At the median value for ​Z​i​ (0 collisions per thousand cars),41 the 
estimate in column 3 shows there are 0.036 more collisions following the introduc-
tion of a countdown signal, three times more than the effect reported in Table 2. This 
implies that for intersections less dangerous than the median, the countdown causes 
a significant increase in collisions. On the other hand, the estimate for the median 
intersection implies that countdowns reduced the propensity for collision at histori-
cally very dangerous intersections.42

40 For some intersections we observe volume more than once. In these cases, we use the average over the number 
of observations.

41 Not surprisingly (given that collisions are relatively infrequent) the distribution of ​Z​i​ is very skewed to the 
right.

42 The effect of countdowns on collisions becomes neutral at the 70th percentile of ​Z​i​ .
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We can infer two conclusions from these findings. The first is cities might ben-
efit from installing countdowns at historically highly dangerous intersections and 
from not installing them at historically safe intersections. The second conclusion 
is that while countdowns can improve safety in historically dangerous cities, they 
may be detrimental to safety in historically safe ones. This conclusion applies to 
cities where the responses to countdowns by individual road users resembles the 
responses of individual road users in Toronto.

VII.  Conclusion

Most existing studies analyze the effect of policies that increase the information 
that participants on one side of a market have about participants on the other side. 
We focus on the impact of a policy which increases the information that partici-
pants on all sides have about an event that is in their common interest. We draw on 
a natural experiment conducted in the city of Toronto to evaluate the impact that 
pedestrian countdown signals have on the behavior and safety of road users. We find 
that the installation of countdown signals resulted in approximately 21.5 more col-
lisions citywide per month, a more than 5 percent increase over the average without 
countdown signals. The data reveals starkly different effects for collisions involving 
pedestrians and those involving automobiles only. Although they reduce the number 
of pedestrians struck by automobiles, countdowns increased the number of colli-
sions between automobiles. We show that countdowns cause fewer minor injuries 
among pedestrians for every pedestrian on the road and more rear ends among cars 
for every car on the road.

The findings imply authorities can improve welfare by sharing the information with 
pedestrians and hiding it from drivers. For example, rather than making countdowns 
visible, the traffic authority might announce the time until a light change through 
a speaker that only pedestrians can hear. Although this policy makes it more diffi-
cult for drivers to use the information for their personal gain, it continues to provide 

Table 10—Countdown Timers at Safe and Dangerous Intersections

(1) (2) (3) (4)

Countdowns activated −0.207*** 0.008*** 0.036*** 0.032***
(0.012) (0.003) (0.006) (0.006)

Interaction with 0.353*** −0.069*** −0.070*** −0.065***
  accident history (0.017) (0.011) (0.011) (0.011)
Controls
  Intersection No Yes Yes Yes
  Month-year No No Yes Yes
  Lagged collisions No No No Yes

​R​2​ 0.002 0.002 0.006 0.006

Intersections 1,692 1,692 1,692 1,692
Observations 101,520 101,520 101,520 99,828

Notes: The dependent variable is number of collisions. Robust standard errors clustered at the 
intersection level.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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pedestrians with information that can make their lives safer. More generally, rather 
than simply releasing or withholding information, policymakers can achieve welfare 
gains by creating asymmetries in the information that market participants possess.

The data also reveals that, though countdown timers make the typical intersection 
more dangerous, they have disparate effects on intersections with different propen-
sity for collisions. In particular, countdown timers actually make historically very 
dangerous intersections safer. This finding provides policymakers with additional 
guidance concerning the adoption of pedestrian countdown signals. More specif-
ically, two prescriptions follow from the finding. First, cities might benefit from 
installing countdowns at dangerous intersections and not at safe ones. Second, under 
the assumption that the response to countdowns by road users in other cities will 
resemble the response by road users in Toronto, cities that are historically dangerous 
for road users should consider adopting countdowns, while cities that are histori-
cally safe should not.
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PAGING INSPECTOR SANDS:

THE COSTS OF PUBLIC INFORMATION

Online Appendix

Sacha Kapoor and Arvind Magesan∗

This appendix has two sections. In the first section we provide a simple theoretical example to
rationalize the key empirical result from the paper, that the installation of countdown timers
increased the propensity for collisions among drivers. In the second we provide discussion and
evidence of the robustness of the key empirical findings to alternative estimation methods.

1 A Textbook Example of Driver Interaction

We modify a simple textbook model of driver interaction,1 where drivers can choose to act ag-
gressively or cautiously, to rationalize the finding that informing drivers about light changes
causes more driver-driver collisions. The modification is that we allow for uncertainty in
what drivers know about the time until a light change at an intersection. We show that un-
der rather innocuous assumptions, equilibrium collision probabilities are larger when drivers
know the time that remains. The result follows from two simple features of equilibrium
behavior in our model. First, aggressive behavior on the part of informed drivers is more
likely when less time remains. Second, drivers are most responsive to information about light
changes when they learn the time that remains is less than they expected. Taken together,
the features of equilibrium behavior imply that informing drivers increases the chances of a
collision.

1.1 Model

Suppose that two randomly matched drivers drawn from a single population approach an
intersection from different directions. As they approach, each driver can choose either to
proceed with caution (C) or to act aggressively (A). A driver who acts cautiously either slows
down or stops, yielding the right-of-way to the other driver. A driver who acts aggressively
either continues at the same speed or speeds up without conceding the right-of-way. We

∗Kapoor: Erasmus University Rotterdam, Erasmus School of Economics H09-22, Burgemeester Oudlaan
50, 3062 PA Rotterdam, The Netherlands, kapoor@ese.eur.nl. Magesan: University of Calgary, Department
of Economics, 2500 University Drive N.W., Calgary AB, T2N 1N4, Canada, anmagesa@ucalgary.ca.

1See Approaching Cars on page 130 of Osborne [2004].



assume drivers are impatient and prefer the right-of-way to waiting for the other to pass.
Drivers that are aggressive risk receiving a fine if they are caught, and risk collision with the
other vehicle if its driver also chooses to be aggressive. This general framework encompasses
several common interactions that occur at intersections. One such interaction occurs when
a driver who is traveling straight through an intersection meets another who is turning left
from the opposite direction. Another occurs when a driver is again traveling straight through
but meets a driver who is turning right from the adjacent street.

Let v > 0 be the payoff from obtaining the right-of-way, c > 0 the cost of collision, and
b > 0 be the cost of a fine to a driver caught crossing the intersection when the light is red.
We assume that c > b. Let p be the probability that a collision occurs when both drivers
act aggressively. Let PT (ω) be the probability that a driver is caught and fined when he
acts aggressively. ω is a random variable that represents the number of seconds until a light
change (from green to yellow). Its probability distribution is given by F (ω). We assume that
PT (ω) decreases as ω increases. That is, the probability of a fine when acting aggressively
diminishes as the amount of time left before the light changes from green to yellow increases.
For example, driving through a red light is more likely when the driver acts aggressively just
before a light change than when he acts aggressively with plenty of time remaining.

ω is known to drivers when a countdown is present at the intersection, and unknown
to drivers when there is no countdown. When ω is known, drivers have better information
about the consequences of conceding the right-of-way to another road user. In particular,
drivers know whether conceding the right-of-way will cause them to have to sit through a
red light.

The normal form for the simple game we consider is presented in Figure I, where one
driver chooses a row and the other a column. Payoffs are symmetric. The matrix lists the
payoffs for the row player. π(ω) is the payoff to acting aggressively when the other driver

Cautious Aggressive
Cautious 0 0

Aggressive π(ω) p[−c] + (1− p)π(ω)

Figure I: The game when countdowns are active.

acts cautiously, where

π(ω) = PT (ω)[−b] + (1− PT (ω))v. (1)

We assume that the chances of getting caught and fined for aggressive behavior is small
enough so that π(ω) ≥ 0. If π(ω) < 0, being cautions is the dominant strategy for both
players, and in equilibrium collisions are never observed.

1.2 Public Information Increases Collision Probabilities

Under these assumptions, the game has three Nash equilibria: two asymmetric pure strategy
Nash equilibria where one driver is cautious and the other aggressive and a symmetric mixed
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strategy Nash equilibrium (MSNE) where each player acts cautiously with probability

q∗(ω) =
pc− (1− p)π(ω)

p(c+ π(ω))
. (2)

We focus our analysis on the MSNE for two important reasons. The first is that pure
strategy equilibria are at odds with what we observe in the data, as they suggest that colli-
sions never happen. On the other hand, when drivers use mixed strategies, the equilibrium
probability that an collision occurs is given by:

P ∗

i
(a|ω) = (1− q∗(ω))2p (3)

=
1

p

[ π(ω)

c+ π(ω)

]2

> 0. (4)

The second reason we focus on MSNE is that the MSNE is the only symmetric Nash equi-
librium of the game.2 The pure strategy equilibria each require one driver to defer to the
other by social convention. However, we are unaware of any social convention that would
lead one of these equilibria to be the norm.3

Figure II describes the game where drivers are unable to observe countdown signals and
are therefore uninformed about the time until a light change. Eπ(ω) is the expected payoff

Cautious Aggressive
Cautious 0 0

Aggressive Eπ(ω) p[−c] + (1− p)Eπ(ω)

Figure II: The game when countdowns are inactive.

to acting aggressively, where the expectation is taken with respect to ω.4 Similar to the case
where drivers are informed about ω, the unique MSNE probability of being cautious is given
by:

q∗(F ) =
pc− (1− p)Eπ(ω)

p(c+ Eπ(ω))
. (5)

We can use the unique MSNE to solve for the collision probability when there are no count-
down timers - drivers are uninformed :

P ∗(a|F ) = (1− q∗(F ))2p (6)

=
1

p

[ Eπ(ω)

c+ Eπ(ω)

]2

. (7)

2In the language of evolutionary game theory, the MSNE is the unique evolutionarily stable strategy of
our game.

3As we imagine that drivers are drawn and matched randomly from the same population, the MSNE
can also be interpreted as the ‘steady state’ of interactions at intersections. Under this interpretation some
fraction of the population of drivers act cautiously while the other fraction acts aggressively (See pp.37-39
of Osborne and Rubinstein [1994]).

4We assume that driver beliefs about the time until a light change are consistent with the true distribution
F (ω).
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Proposition 1 The probability of an accident occurring at an intersection is larger when
countdowns are present than when they are not:

Eω[P
∗(a|ω)] > P ∗(a|F ) (8)

Proof 1 Simple algebra reveals that :

Eω[P
∗

i
(a|ω)] > P ∗(a|F ) ⇔ E

[ 1

1− −c

π(ω)

]2

>
[ 1

1− −c

Eπ(ω)

]2

. (9)

Our assumption that c > b combined with Jensen’s inequality ensure that E
[

1
1− −c

π(ω)

]2

>
[

1
1− −c

Eπ(ω)

]2

. To see this Let h(r) = π(ω)
c+π(ω)

where r = PT (ω). We define f(t) ≡ 1
(1−t)

and

g(r) ≡ c

r(b+v)−v
so that h(r) = f(g(r)). The functions f and g have the following properties:

a) f(t) is increasing and convex if t < 1; b) g is decreasing and convex in r. These properties
imply that h is convex in r for t < 1. Or, equivalently, h(r) is convex in r if and only if
−c < r(−b) + (1 − r)v. The inequality −c < r(−b) + (1 − r)v clearly holds when c > b.
It follows that the square h(r)2 is also convex in r. Since r is a monotone function of ω,
applying Jensen’s Inequality to h(r)2 yields the result.

Mathematically speaking, the result is driven by the fact that the MSNE probability a driver
is aggressive is convex and increasing in ω.

Consider figure III, which illustrates the key properties of the equilibrium with and with-
out knowledge of ω. In the figure q(ω) traces the informed driver’s equilibrium probability
of behaving aggressively as a function of the state of the world ω. q(F ) represents the un-
informed driver’s equilibrium probability of behaving aggressively. It is independent of the
true state of the world. ∆ represents a unit change in the time remaining until a light change.
ω0 satisfies q(ω0) = q(F ). Two important facts are evident in the figure:

1. As ω gets smaller informed drivers are more likely to be aggressive - q(ω) is decreasing.

2. The sensitivity of a driver’s behavior to knowledge of ω, as measured by q(ω)− q(F ),
is largest when the information is that he has less time than he expected.

Taken together, the facts imply that the presence of countdown timers raises the propensity
for collision. Driver behavior is most responsive to information about the state of the world,
ω, precisely at the states of the world where they are most aggressive. As such, on average,
collisions are more likely when a countdown timer is present at the intersection.
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Figure III: Equilibrium Probability of Aggression with
and without Knowledge of ω

ω

q∗(ω)

q∗(F )

ω0 ω0 +∆

q(ω0 +∆)

ω0 −∆

q(ω0 −∆)

2 Robustness

The outcome variable in our study is the number of collisions, which is of course a non-
negative integer, or more specifically, a count variable. As such, one may argue that count
data methods are more appropriate than Ordinary Least Squares with Fixed Effects (OLS
FE) for estimating the effect of interest in our study. Unlike the case of OLS, the estimating
equation in the count data context is non-linear in nature. Thus, while the fixed effects are
simply differenced away in the OLS FE case, they can not simply be differenced away in
these other non linear frameworks. Estimating the fixed effects may introduce an incidental
parameters problem and lead to unreliable estimates of the effect of interest. Not including
fixed effects is not a viable option either, as a key part of our identification strategy is being
able to control for permanent, unobserved differences across intersections.

Hausman et al. [1984] propose a method for estimating count models while allowing for
permanent unobserved heterogeneity. They show that under certain assumptions about the
structure of the econometric error, conditioning on the sum (over time) of the outcome for
each intersection delivers a likelihood function that does not depend on intersection fixed
effects. An implication of the Hausman et al. [1984] approach, however, is that it excludes
intersections where there were no collisions. Because the number of collisions is a non-
negative integer, if the sum over time is zero then the count in any particular month must
also be zero. It follows that the collision probability in any particular month is zero and,
consequently, that observations from these intersections cannot contribute to the likelihood
function. This is a serious issue in our context for two reasons. First, the intersections that
are dropped are not randomly dropped. Put differently, intersections where countdowns
were installed and where there were no collisions are informative for accurately estimating
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average treatment effects. Restricting the analysis to the selected sample where at least one
collision occurs yields an overestimate of the average effect. The second reason is that there
is a substantial loss in statistical power when we limit the analysis to the selected sample.
The loss of statistical power is particularly important in the present context because we are
studying the effects of countdown timers on a rare event (collisions). With rare events, one
requires an abundance of data in order to detect seemingly small yet statistically significant
effects. As the [Hausman et al., 1984] method excludes 819 intersections, or approximately
46 percent of the intersections in the sample, the loss of power in our context is particularly
severe.

Table I illustrates the problems that come from restricting the sample to a non-random
sample of intersections experiencing at least one collision. Column 4 of Table I presents the
marginal effect from a Poisson regression (employing the Hausman et al. [1984] method) of
collisions on the introduction of a countdown. The marginal effect implies the increase in
collisions for the average intersection in the restricted sample was 17 percent. Unsurprisingly,
this effect is much larger than the 5 percent estimate implied by OLS fixed estimates that use
a representative sample (Column 1). It is also unsurprising that the estimate is statistically
insignificant - there is substantial loss in statistical power that comes from basing the estimate
on the restricted sample of 975 intersections rather than on the representative sample of 1794
intersections.

Column 2 of Table I presents OLS FE estimates of the effect of countdowns for the
restricted sample the Hausman et al. [1984] method uses. The estimate further illustrates
the effects of selection and a loss in statistical power - it shows that this effect is not specific
to the Hausman et al. [1984] method. At the same time the coefficient estimate is more
conservative than the Poisson fixed effects estimate of Column 4. The estimate implies the
introduction of a countdown resulted in 0.019 more accidents at the average intersection,
where the estimate is statistically significant at the 10 percent level. As with the Poisson
estimate, the estimate of column 2 is much larger than the estimate of Column 1. It is also
more imprecisely estimated, as its standard error is more than double the standard error of
Column 1. The estimate is more conservative than the Poisson estimate, as it translates into
an 8.3 percent increase (rather than a 17 percent increase) in the number of collisions after
a countdown was introduced.

Ideally, to deal with the fact that collisions are rare, one would like to apply “zero-
inflated” count methods to the full sample [Cameron and Trivedi, 2005]. Zero-inflated meth-
ods account for rare events by explicitly modeling a separate data generating process for the
zeros in the sample. Unfortunately, these methods not yet developed to the point where
they can account for fixed effects. This is a problem because, as the OLS FE estimates for
the full sample reveal, accounting for the fixed effects is crucial for properly evaluating the
effects of countdown timers. It shows, specifically, the importance of using the substantial
within-intersection variation in identifying a treatment effect.

Since there is no well-developed statistical framework for accounting for both fixed effects
and counts with excess zeros, we provide a back-of-the-envelope Poisson estimate that allows
us to keep all of intersections in the data while, at the same time, accounting for fixed effects.
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Table I: Poisson with Fixed Effects, Selection, and a Loss in Statistical Power

OLS FE on OLS FE on Back-of-the Poisson FE on
Representative Selected Envelope Selected

Sample Sample Poisson FE on Sample
Representative

Sample

Pedestrian Countdown 0.012** 0.019* 0.012** 0.040
Signal Activated ( 0.006) (0.012) (0.006) (0.040)

Implied Percentage 5.2 8.3 5.2 17.5
Change in Collisions
Intersections 1794 975 1794 975

Observations 107640 58500 107640 58500

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for p < .01, ** for
.01 < p < .05, * for p < .1.
3. Regressions include intersection and month-year fixed effects.

The approach proceeds in two-steps. In the first step we use OLS to “partial out” the
intersection and time fixed effects from our treatment variable, by regressing the treatment
variable on time and intersection fixed effects and retaining the residual. In the second step
we simply run a standard Poisson regression of accident count on this residual.5 We do
not need to consider fixed effects in this second stage because the treatment residual is by
definition orthogonal to the fixed effects. It is the part of the treatment not explained by
time and intersection fixed effects. This back-of-the-envelope estimate is found in Column
3 of Table I. Note the striking similarity to the result in Column 1, where the OLS FE
estimator (for the full sample) is presented. The average partial effect is 0.012, an estimate
which implies a 5.2 percent increase in collisions at a representative intersection after the
countdown timer is introduced. The average partial effect, its statistical significance, and
implied percentage change are all similar to the one we obtain with OLS FE on the full
sample.

While the lack of a feasible count data method is disappointing in our context, OLS
estimation of econometric models with a non-negative integer outcome is not necessarily
problematic in terms of obtaining consistent estimates of the effect of interest. OLS regres-
sion applied to a model with a binary outcome (the Linear Probability Model) “produces
consistent and even unbiased estimators” of the regression coefficients [Wooldridge, 2010,
pg. 562] and in the case of models where the outcome is a count, OLS may “provide good
estimates of average partial effects (APE’s) on the conditional mean.” [Wooldridge, 2010, pg.
723] The real drawback of applying OLS to econometric models with a non-negative integer

5Note that if we were to consider simple OLS regression of accident count on the residual in the second
stage, by the Frisch-Waugh Theorem we would simply obtain the same estimate as in Column 1 (the main
result of the paper) [Angrist and Pischke, 2009, pg. 35].
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Table II: Collisions and Countdowns with Bootstrapped Standard Errors

(1) (2) (3) (4)

Pedestrian Countdown -0.055*** -0.022*** 0.012*** 0.011**
Signal Activated (0.005) (0.004) (0.004) (0.004)

Controls
Intersection N Y Y Y

Month-Year N N Y Y

Lagged Collisions N N N Y

Intersections 1794 1794 1794 1794

Observations 107640 107640 107640 105846

1. The dependent variable is number of collisions.
2. Bootstrap Standard Errors (based on 10 replications) in parentheses,
*** for p < .01, ** for .01 < p < .05, * for p < .1.

outcome is that the usual OLS test statistics do not apply. Essentially, the count nature of
the outcome implies that the statistical error is not normally distributed. However, normal-
ity of the error term in a regression is not a prerequisite for consistency or unbiasedness of
the OLS estimator. Normality of the error term is typically assumed in when using OLS in
order to ensure that the test statistic has a t-distribution. In other words, if the errors of the
regression model are not normally distributed, it is not necessarily the case that the usual
critical values apply. That is, the count nature of the outcome is a problem for inference,
not identification.

We tackle the inference issue in a couple ways. First, we consider the most common
alternative method for approximating standard errors, bootstrapping. The validity of boot-
strapped standard errors and the resulting test statistics does not rely on the assumption of
normality of the regression model error.

Table II presents the coefficient estimates from our main table (Table 2 in the paper)
with bootstrap standard errors in place of the usual standard errors. The results show that
bootstrapping the standard errors leads to more precise estimates of the effect of countdowns
on accidents. Specifically, Column 3 of Table II shows the p-value falls from a value less than
0.05 to a value less than 0.01. Thus the main result of the paper is robust to relaxing the
assumption of a normal error.

Second, we consider a simple transformation of our outcome variable to a continuous
measure. We redefine the outcome to be the ratio of number of accidents to total traffic flow
through an intersection. We thus consider the effect of countdowns on collisions per-capita, or
the rate of collisions, a smooth variable. In principle, the collision rate can equal any positive
real number. As such, it is more likely that the error in a regression model follows a normal
distribution than when the dependent variable is a (discrete) count. Fixed effect estimates
with the accident rate as the dependent variable are found in Table III. The estimates show
our main results are robust to our continuous transformation of the dependent variable.
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Table III: The Effect of Countdowns on Collision Rates

(1) (2) (3) (4)

Pedestrian Countdown -0.004** -0.002** 0.00093* 0.00095*
Signal Activated (0.001) (0.0004) (0.00054) (0.00056)

Controls
Intersection N Y Y Y

Month-Year N N Y Y

Lagged Collisions N N N Y

Intersections 1794 1794 1794 1794

Observations 106393 106393 106393 105552

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for
p < .01, ** for .01 < p < .05, * for p < .1.

Finally, we end the robustness section by illustrating that our main result is robust to the
inclusion of several lags of the dependent variable. Estimates with two to six lags are found
is Table IV. The table shows there were 0.010 more collisions at the average intersection once
a countdown was introduced, where the estimates are generally statistically significant at the
10 percent level. As Table IV illustrates, the point estimates and statistical significance are
strikingly similar across all five specifications.6

6Two factors can explain the decline in statistical significance in Column 6. The first is that the statistical
power of our estimator falls as we exchange more lags for fewer observations. The decline in statistical power
makes it more difficult to detect small but statistically significant effects. The second is that the incidental
parameters problem, which arises because autoregressive parameters mechanically depend on intersection
fixed effects, is of greater concern as the cross-sectional dimension grows relative to the time-series dimension.
This dimensionality problem reduces the chances of obtaining consistent estimates of the countdown’s effect.
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Table IV: Collisions and Pedestrian Countdown Signals

(1) (2) (3) (4) (5)

Pedestrian Countdown 0.010* 0.010* 0.010* 0.010* 0.010
Signal Activated (0.006) (0.006) (0.006) (0.006) (0.006)

Controls
Collision Lags Two Three Four Five Six

Intersections 1794 1794 1794 1794 1794

Observations 104052 102258 100464 98670 96876

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for
p < .01, ** for .01 < p < .05, * for p < .1.
3. Regressions include intersection and time fixed effects as well as a
control for the months since the first installation.
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