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The rise of intelligent matter

C. Kaspar1, B. J. Ravoo2,3, W. G. van der Wiel1,4, S. V. Wegner5 & W. H. P. Pernice1,3 ✉

Artificial intelligence (AI) is accelerating the development of unconventional 

computing paradigms inspired by the abilities and energy efficiency of the brain.  

The human brain excels especially in computationally intensive cognitive tasks,  

such as pattern recognition and classification. A long-term goal is de-centralized 

neuromorphic computing, relying on a network of distributed cores to mimic the 

massive parallelism of the brain, thus rigorously following a nature-inspired approach 

for information processing. Through the gradual transformation of interconnected 

computing blocks into continuous computing tissue, the development of advanced 

forms of matter exhibiting basic features of intelligence can be envisioned, able to 

learn and process information in a delocalized manner. Such intelligent matter would 

interact with the environment by receiving and responding to external stimuli, while 

internally adapting its structure to enable the distribution and storage (as memory) of 

information. We review progress towards implementations of intelligent matter using 

molecular systems, soft materials or solid-state materials, with respect to applications 

in soft robotics, the development of adaptive artificial skins and distributed 

neuromorphic computing.

Intelligence can be understood as the ability to perceive information 

and to retain it as knowledge to be applied towards adaptive behav-

iour within a changing environment. Although there is no generally 

acknowledged definition of intelligence, corresponding concepts in 

the field of intelligence research embrace two main traits: first, the 

ability to learn and, second, the capacity to adapt to an environment1–3. 

Both abilities are thus far mostly found in living organisms. Yet, with 

the proliferation of AI, intense efforts are being made to implement 

learning and adapting skills in increasingly complex systems that 

co-integrate various functional components4–6. Going beyond such 

functional architectures, the realization of synthetic matter that itself 

shows basic features of intelligence would constitute an entirely new 

concept of AI. Even though such matter which we term here intelligent 

does not show the same level of intelligence as would be understood in 

a psychological sense (including, for instance, the ability for cognition 

or language), its functionality would go far beyond the properties of 

static matter. Inspiring examples of potential applications include 

artificial skin7,8 that self-regulates temperature and absorbance, intel-

ligent clothing9 that, depending on the wearer’s sensation, turns into a 

warming or cooling garment, as well as soft robotics10,11 with intelligent 

tactility. However, because of the vast amount of data that needs to 

be processed in advanced AI applications, regulating the behaviour 

of intelligent matter in a central manner will be very challenging. In 

particular, centralized information processing with conventional com-

puters based on the von Neumann architecture will quickly reach its 

limits. This is because shuffling data from memory to processor and 

back not only greatly reduces the speed of the computation, but also 

requires substantial power consumption12. New approaches and com-

puting paradigms are thus required to be implemented directly at 

the matter level, thus allowing for local pre-processing of data using,  

for instance, in-memory computing13,14. In this way, intelligent matter 

itself could interact with the environment, self-regulate its action, and 

even learn from the input it receives.

For the design of intelligent matter, inspiration from nature is ben-

eficial: bottom-up assembly is nature’s way of achieving material prop-

erties that outperform the properties of their individual constituent 

units. The macroscopic functionalities of natural matter emerge from 

sophisticated design motifs and the interplay of molecular, nanoscale 

and macroscale building blocks15. In artificial matter, a combination of 

bottom-up and top-down methods enables architectures with a variety 

of novel characteristics and functionalities15,16. We can use the concept 

of increasing functionality and complexity to define intelligence for 

artificial matter in a hierarchical manner, as illustrated in Fig. 1. This 

form of intelligence can be realized on a material level by combining 

four key functional elements (see Box 1): (1) sensors to interact with the 

environment and receive input and feedback; (2) actuators to respond 

to the input signal and adapt the material’s properties; (3) memory for 

long-term storage of information and (4) a communication network 

to process feedback. Ideally, these elements form functional process-

ing continua, which do not require a centralized processing unit, but 

rather provide the capability for local and distributed information 

processing17.

Four categories of matter can be identified, each of which contain 

different functional elements, depending on their complexity. The 

most basic group is structural matter without any functional elements. 

It may comprise highly complex but static structures, which, despite 

having a wide range of functions, cannot change their properties after 

synthesis. At a more advanced level, responsive matter is capable of 

changing its properties (shape, colour, stiffness, and so on) in response 

to an external stimulus, such as light, electrical current or force.  
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The response results strictly from the application of the stimulus, is 

always equal for specific inputs and, thus, cannot change. But responsive 

matter can be reversed, that is, switched back to the original state, by a 

relaxation process or by an orthogonal counter-trigger18–20. To provide 

this active response, both embedded sensors and actuators are needed.

Intense efforts are underway to move beyond responsive matter to 

adaptive matter, which has the inherent capability to process internal 

feedback and, thus, not only changes its properties, but even regu-

lates them in response to different environments and stimuli18. Thus, 

adaptive matter relies on a further functional element—namely, a 

network—to provide feedback in addition to sensors and actuators. 

Feedback can arise from a combination of multiple responsive units 

integrated into the same system, realized by coupled chemical reac-

tions or electronically, optically or magnetically coupled nanoscale 

components21. Although, in this way, the properties change over time 

depending on the input history, the evolution of the properties still 

depends on external input. A recent viewpoint article by Walther offers 

a particularly articulate view, arguing that truly adaptive materials 

can only arise in out-of-equilibrium systems (generally called ‘active 

matter’)18. This definition brings adaptive materials into the realm of 

‘life-like materials’, which are synthetic materials that are inspired by 

biological and living matter19.

Moving beyond adaptive matter will lead eventually to the develop-

ment of what we term intelligent matter. Intelligent matter is able to 

interact with its environment, learns from the inputs it receives and 

self-regulates its action. Learning is enabled by an inherent mem-

ory functionality in which the acquired knowledge or skill is stored 

long-term as experience and can be recalled to produce future behav-

iour. Thus, intelligent matter includes all four functional elements 

(sensors, actuators, network and long-term memory) and shows the 

highest level of complexity and functionality. Here, we outline the devel-

opment trajectory of these classes of functional matter, give examples 

of complex systems with various degrees of functionality, and show 

recent trends towards the ultimate development of intelligent matter.

Swarm-based, self-organized materials

A prominent form of complex behaviour relies on the collective interac-

tion of a large number of individual agents in groups or swarms. Here, 

multiple individually responsive entities can self-organize in such a 

way that large-scale adaptive phenomena emerge, for example, pat-

tern formation to protect the collective. In nature, this behaviour is 

observed in insect colonies22, schools of fish23, birds24 and even mam-

mals25. The global response of the collective is often considered to 

exhibit features of intelligent behaviour, and typically goes beyond 

the capabilities of the individual elements, which only communicate 

with their nearest neighbours. Hence, the actions of the individual 

agents are coordinated in a decentralized manner. This concept of 

basic intelligence is particularly interesting for the realization of intel-

ligent matter when using building blocks that are implemented on 

the nanoscale. Nevertheless, on such length scales it is challenging to 

integrate all of the four key functional elements—in particular long-term  

memory—as individual components. An illustrative example for emu-

lated swarm-behaviour is the interaction of a large group of small 

robots, each about one centimetre tall and with limited capabilities26, 

which can arrange in complex, predefined shapes (Fig. 2a). The indi-

vidual robots are responsive agents, merely follow their programmed 

individual algorithm and communicate only with their nearest neigh-

bours. However, since an external programmer predefines the targeted 

shape and gives instructions in form of an algorithm, the whole group 

of robots is not intelligent according to our definition, but rather adap-

tive. When considering swarm behaviour on the nanoscale, similar 

restrictions remain and so such systems constitute examples of adap-

tive matter, as described in the following.

Nanoparticle assemblies

In self-assembled material systems, local communication between the 

weakly coupled and highly dynamic components takes place in the form 

of particle−particle interactions. Yu et al.27 describe the application of 
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Fig. 1 | Conceptual transition from structural to intelligent matter with 

increasing functionality and complexity, and corresponding examples. 

Structural matter is static and cannot change its properties after synthesis, 

such as pure silicon. Responsive matter can change its properties upon 

application of an external stimulus (illustrated as red lightning) and comprises 

embedded sensors and actuators. When an orthogonal counter-stimulus 

(illustrated as purple lightning) is applied, responsive matter switches back to 

its original state. The opening and closing of a 3D-printed sunflower made of a 

photoresponsive shape memory composite42 is an example of responsive 

matter. Adaptive matter can modify its properties in response to a stimulus 

using internal feedback. In addition to sensors and actuators it features a 

network (illustrated as light blue connections). The magnetic microswarm 

depicted27, which can move within obstructive channels, shows adaptive 

behaviour. Intelligent matter is able to interact with its environment, learns 

from the input it receives and self-regulates its action. All four key functional 

elements—sensor, actuator, network and long-term memory—need to be 

incorporated. The arm of an octopus, with its embedded sensors, actuators 

and nervous system, represents intelligent matter. Copyright for lower 

leftmost panel: Peter Sobolev/Shutterstock.com. Copyright for lower 

rightmost panel: ND700/Shutterstock.com.



Nature | Vol 594 | 17 June 2021 | 347

programmed oscillating magnetic fields to arrange paramagnetic nano-

particles into a ribbon-like dynamic microswarm. Based on repulsive 

fluidic and attractive magnetic interactions between the chain-forming, 

structural nanoparticles and depending on the initial shape, the micro-

swarm can perform reversible anisotropic deformation, controlled 

splitting and merging with high pattern stability as well as navigated 

locomotion (Fig. 2b). These shape adaptions rely on the input of an 

external programmer who manipulates the magnetic field and there-

fore the particles do not show intelligent behaviour by themselves.

Colloidal particles similarly provide promising building blocks for 

material systems exhibiting self-organization properties. Steered by 

osmotic and phoretic effects, synthetic bimaterial colloids in a basic 

solution form two-dimensional ‘living crystals’ when illuminated by 

blue light28. More complex three-dimensional crystals or microtubes are 

grown out of Janus colloids in a precessing magnetic field29. A leader−

follower relationship30 between microparticles or a cargo transport31 

can be obtained if the size and dielectric properties of different colloids 

are varied and they are exposed to an alternating-current electric field 

or ultraviolet light (Fig. 2c). Additionally, the swarm performs negative 

or positive phototactic motions depending on the light intensity to 

which it is exposed. Thus, the particle system shows adaptive behaviour 

to ambient illumination conditions. Phototaxis, that is, the ability to 

sense and orient to the illumination direction of a light source, has also 

been realized in artificial microswimmers, which have the structure 

of a Janus nanotree and propel by self-electrophoresis32. Tagliazucchi 

and co-workers show another intriguing example of adaptive swarm 

behaviour. The simulations reveal that dissipative self-assembly gives 

rise to particle configurations of pH-responsive colloids that are not 

available in equilibrium. As soon as the continuous input of energy is 

stopped, the assembled structures decompose33.

Molecular materials

Intriguing adaptive behaviour has been reported in synthetic molecular 

systems in which feedback arises from reaction networks and coupled 

intermolecular interactions34,35. Limited availability of the required 

building blocks leads to the successive emergence of two different 

sets of co-existing replicators, each consuming only their preferred 

feedstock. This can be understood as an adaptation to the availabil-

ity of ‘food’. Moreover, information transfer regarding the size of the 

self-replicating molecules was observable from the ancestor to the 

descendent replicator. This behaviour has parallels to specification 

in biology. In a different dynamic molecular network, the substrate 

of a chemical reaction in combination with a second molecule tran-

siently forms its own catalyst. After the reaction is completed, the 

catalyst is automatically decomposed. In this way, the concentration 

of the catalyst is regulated, reminiscent of the continuous regulation 

of enzyme concentration in biological systems giving rise to adap-

tive behaviour. Furthermore, positive feedback of self-replicators was 

demonstrated, in which the self-replicators recruit a cofactor for the 

production of their own precursors36. These related examples clearly 

describe adaptive systems in which feedback arises from reaction net-

works and coupled interactions. There is no doubt that communication 

takes place between individual components and that an appropriate 

action is derived from the ‘sensed’ information, indicating feedback. 

Box 1

Key functional elements of intelligent matter
Intelligent matter interacts with its environment, receives 

information, and self-adapts based on knowledge gained from past 

events. To realize a basic form of intelligence within artificial matter, 

the integration of four key functional elements is essential (see  

Box 1 Fig. 1).

(1) A sensor unit is required to receive information about both the 

current state and changes in the environment, as well as to receive 

feedback signals. This process of sensing or detecting is usually 

an energy transformation, where the energy of the input signal is 

converted into a form of energy that can be further processed, such 

as, for example, the conversion of heat into an electrical potential or 

the absorbance of light to provide a different molecular structure.

(2) In response to an external stimulus, synthetic matter can 

respond with a modification of its properties. This requires actuator 

mechanisms, which provide an output to the environment, such as a 

change in shape, colour, phase, conductivity and so on.

(3) To retain the received information as knowledge, inherent 

memory capability is necessary. Memory enables long-term storage 

and processing of information, which can be recalled as knowledge 

in the future. In addition to the input signals, feedback signals can 

also be stored, so that observed consequences of actuation can be 

used for learning processes.

(4) The final key functional element constitutes the interconnection 

of sensor, actuator and long-term memory elements. Such 

connections can be realized via signal pathways in a matter network, 

which enables the delivery of information and further allows for 

feedback to be provided.

Different combinations of the four key functional elements—

sensor, actuator, network and memory—in synthetic matter result 

in different levels of complexity and functionality. Whereas for 

responsive matter a sensor and actuator are both clearly necessary, 

adaptive matter further requires network pathways in order to 

provide feedback. The close interplay between all four functional 

elements is essential for processing information, which is generated 

during the entire process of interaction between matter and the 

environment, to enable learning. Hence, if one of the key functional 

elements is lacking, then, according to our definition, the material is 

not considered intelligent.

We note that our definition of intelligence in matter cannot 

be readily compared to the intelligence of living beings in a 

psychological sense. The four key functional elements are essential 

to implement artificial intelligent matter, but at the same time they 

are not sufficient to enable the emergence of will or cognition, 

which distinguishes synthetic matter from intelligent living beings.

Box 1 Fig. 1 | Intelligent matter is composed of embedded sensors, 

actuators and signal pathways in internal networks and within-matter, 

long-term memory.
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However, in-matter memory is lacking, which prevents learning from 

past events and adapting behaviour in an intelligent manner according 

to the concept shown in Fig. 1.

Soft-matter implementations

In biological systems, softness, elasticity and compliance are salient 

features, which enable a continuous deformation and, hence, a smooth 

motion within a congested environment37. Natural skin further exhibits 

striking properties of basic intelligence as defined above, including the 

tactile sensation of force, pressure, shape, texture and temperature, 

a haptic memory and the capability of self-healing38. The field of soft 

robotics aims to translate these properties into soft-matter implemen-

tations. Soft robots are able to emulate biological motion by adapt-

ing their shape, their grip and their tactility. Compared to their rigid 

counterparts, the risk of harm is dramatically reduced when they are 

in contact with humans or other fragile objects owing to compliance 

matching of materials10,11,37. Intelligent soft matter, which unifies all four 

building blocks outlined in Box 1, could thus assist soft-robotic devices 

to mimic organisms37. In the form of an artificial skin, it could further 

provide a variety of possibilities in health care and medical applica-

tions. Multifunctional wearables, which monitor health parameters 

with a potential subsequent drug delivery39, human motor assistance 

via supplying mechanical work after stroke11 or prosthetics with tactile 

sensations can be envisioned.

Although full integration of all four key functional elements in soft 

matter is still elusive, various implementations that combine at least 

two of the functional elements have been reported.

Responsive soft matter

Soft matter can receive inputs from the environment via sensing ele-

ments and provide a direct response through embedded actuators, 

which is the basic requirement for classification as responsive mat-

ter. The most common actuation is a change in shape and softness 

as a function of the input. One example is a self-contained artificial 

muscle consisting of a silicone elastomer matrix in which actuation 

relies on the liquid−vapour phase transition of embedded ethanol 

micro-bubbles upon heating40. This responsive artificial muscle is 

capable of repeatedly lifting a weight of more than 6 kg as well as 

agonist−antagonist based skeleton-arm motions and can be used in 

soft grippers for lifting objects (Fig. 3a). Another approach to real-

izing the macroscopic mechanical operations of soft robots is the 

responsive hydrogel based on DNA hybridization-induced double 

crosslinking shown by Zhao et al.41. Gestures of a human hand were 

mimicked by locally controlling the volume shrinkage of the mate-

rial with the help of external DNA triggers. Similarly, 3D-printable 

photoresponsive shape-memory composites alter their 3D forms in 

response to light and promise large varieties of applications, such 

as mimicking the open and closed states of a sunflower42. All three 

examples exhibit neither network pathways nor a memory element 

in which to store feedback information about too strong or weak 

actuation forces, for instance.

Especially for artificial skins and multifunctional wearables, unteth-

ered devices are essential. Thus, the ability to self-power in order to 

feed sensors, actuators or memory with the required power is vital 

to device success. Using the embedded actuation to self-generate 
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Fig. 2 | Adaptive swarm behaviour of autonomous robots and clusters of 

colloids. a, autonomous, individually responsive robots merely follow their 

programmed algorithm and communicate with closest neighbours. In a swarm 

of a thousand robots, they self-assemble in complex 2D patterns26. Since an 

external programmer predefines the target shape, the swarm is adaptive and 

not intelligent. b, Paramagnetic nanoparticles form a moving microswarm in 

an oscillating magnetic field27. An external programmer can change the field, 

such that the adaptive swarm can split and circumvent obstacles. The insets 

show an overview of the path and of the current location of the 

swarm (indicated by the green line). c, A group of phototactic TiO2 colloids, 

which cooperatively transport a larger cargo particle by producing a collective 

diffusiophoretic repulsion. Scale bars: left, 200 nm; right, 20 µm. This 

repulsion is controlled by an external programmer via ultraviolet light pulses, 

which makes it an adaptive swarm31. Icons show which of the four key functional 

elements are present.



Nature | Vol 594 | 17 June 2021 | 349

electrical power in response to external inputs is a highly attractive 

approach. One promising attempt by Lai and co-workers takes advan-

tage of the triboelectric effect43. Their artificial skin can actively sense 

proximity, contact, pressure and dampness of touched objects with-

out the need of an external power source and the skin produces elec-

tricity in response (Fig. 3b). Another striking example from Schroeder 

et al.44 uses a biomimetic concept to generate power inspired by the 

electric eel. The authors used gradients of ions between miniature 

polyacrylamide hydrogel compartments bounded by a repeating 

sequence of cation- and anion-selective hydrogel membranes. The 

‘artificial eel’ uses a scalable stacking or folding geometry that  

generates 110 V upon simultaneous, self-registered mechanical con-

tact activation of thousands of gel compartments in series. Unlike 

typical batteries, these systems are soft, flexible, transparent and 

potentially biocompatible.

Soft matter with embedded memory

A further class of functional soft matter combines in-matter memory 

with sensing capability. While such matter would not classify as adap-

tive matter owing to the lack of a network, it goes beyond responsive 

capability. The following examples are able to receive input from the 

environment and alter their response as a function of the input history 

using embedded memory elements. An attractive approach lies in 

combining the sensor and memory elements within a soft and flex-

ible material, which enables them to work cooperatively. Liu et al.45 

realized this concept in a mechanical hybrid material (Fig. 3c), where 

resistance-switching devices serve as memory elements on rigid polym-

erized photoresist (SU-8) islands, which are embedded in stretchable 

polydimethylsiloxane (PDMS). Microcracks in a thin gold film evap-

orated onto the PDMS act as both an electrode and a stress sensor  
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Fig. 3 | Responsive soft matter and soft matter with embedded memory 

functionality. a, Soft grippers and artificial muscle (consisting of a silicone 

elastomer matrix with embedded ethanol bubbles) lifting objects and acting as 

an agonist−antagonist actuator pair40. The material senses heating induced by 

an embedded resistive wire and changes its shape, which results in an 

actuation. b, Soft artificial skin using the triboelectic effect to sense proximity, 

contact and pressure43. In addition to the sensing capability, the self-powered 

material can also embrace objects and lift them up. c, Mechanical hybrid 

substrate that combines memory devices with strain sensors in a wearable 

device45. d, Various deformations of a thin-film organic transistor with 

self-healing properties attached to human limbs46. e, Self-healing process of a 

copolymer: after around 14 h, cuts in the material have completely healed up47. 

f, Conditioning process of a liquid crystal network actuator; scale bar, 5 mm. 

After the initially neutral light stimulus is associated with a heat stimulus, the 

material also responds to light. The material can also be conditioned to certain 

wavelengths: only soft gripper number II was associated with red light, closing 

upon irradiation53. Icons show which of the four key functional elements are 

present. a and b clearly show responsive systems, while examples in c and d 

additionally feature a memory element, and thus go beyond responsive 

behaviour.
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at the same time. Attaching this motion memory device to the joints 

of the limbs allows for detection of human motion based on changes 

in stress and subsequent information storage.

Self-healing is an important property as it allows a material to per-

manently restore its original properties after a disturbance/fracture 

and is a way of erasing memory of past wounding. Oh et al.46 reported 

an organic thin-film transistor fabricated from a stretchable semicon-

ducting polymer that is operational even when folded, twisted and 

stretched on a moving human limb (Fig. 3d). Remarkably, this polymer 

is capable of self-healing after solvent and heat treatment with almost 

fully recovered field-effect mobility. Moreover, materials that self-heal 

without external intervention have been developed47–49 (see Fig. 3e).  

A self-healing ability greatly improves the durability of the material 

and eliminates the need for costly overdesigning.

Information processing usually involves counting, which requires 

a sensing capability as well as a memory element to store the latest 

value. Beyer et al.50 present a design concept for counting matter 

based on subsequent biochemical reactions. The actual counting 

procedure is realized by the release of a specific output molecule or 

enzyme depending on the detected number of light pulses. Another 

approach towards implementing information processing in soft 

matter is to involve the inherent properties of the soft material in 

the computing device51. The soft body and its complex dynamics 

feature nonlinearity and memory capabilities, which are used as a 

reservoir for reservoir computing (see also examples of solid-state 

matter implementations below). More specifically, the motor that 

generates the movements of a soft robot and the sensors that moni-

tor the bending of the soft body together comprise the reservoir. By 

weighing and summing up the values the corresponding output of 

the computing device is generated. This method seems a promis-

ing way to make use of readily available properties of soft robots for 

computational resources.

Materials that can be conditioned to learn a desired new response 

are extremely promising. Zhang et al.52 developed a hydrogel capable 

of associative learning, which is one of the simplest form of learning. 

In the hydrogel embedded and initially randomly distributed gold 

nanoparticles act as memory elements. Initially, the gel−sol transition, 

which is naturally triggered by heating, does not occur when the gel is 

exposed solely to laser irradiation. Simultaneous exposure to light and 

heat induces a photoacid-driven pH-change, which in turn leads to a 

clustering of the nanoparticles in the gel, producing a higher absorb-

ance and thus an increase in temperature upon illumination. Conse-

quently, the previously neutral (no effect) light stimulus now leads to 

melting of the gel. In a follow-up study, the authors demonstrate the 

association of light irradiation with the intrinsically effective stimulus 

of heating within a thermoresponsive liquid-crystal polymer network53. 

The actuator responds to the stimuli via bending, which allows the 

locomotion of microrobots or the closing of grippers (Fig. 3f). Even 

a selective response to various colours (wavelengths) of irradiation is 

achieved if different dyes are used as the absorbing memory element. 

In this form of material, the learned response to a previously neutral 

stimulus is limited to one stimulus, which follows the same pathway 

as the initially known stimulus. Thus, the behaviour is algorithmically 

programmed within a limited parameter range and does not allow for 

conditioning of a response to an arbitrary input, which would constitute 

intelligent behaviour.

Adaptive soft matter

Going beyond responsive examples to adaptive soft matter, He 

et al.21 demonstrate a strategy for creating autonomous homeo-

static materials, which in addition to sensing and actuation also 

include precisely tailored chemo-mechano-chemical feedback 

loops (that is, a network) (Fig. 4a). A bilayer thin film containing 

hydrogel-supported, catalyst-bearing microstructures is separated 

from a reactant-containing ‘nutrient’ layer. Reconfiguration of the gel 

in response to a temperature change induces the reversible actuation 

of the microstructures into and out of the nutrient layer and serves as 

a highly precise on/off switch for chemical reactions. Exploiting a con-

tinuous feedback loop between an exothermic catalytic reaction in the 

nutrient layer and the mechanical action of the temperature-responsive 

gel results in an autonomous, self-sustained system that maintains 

temperature within a narrow range.

Another implementation of adaptive soft matter that contains an 

elegant combination of sensing and actuation coupled by a reaction 
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Fig. 4 | Adaptive soft materials with homeostatic properties and 

enzyme-powered motility. a, Temperature regulation mechanism around a 

certain temperature, the lower critical solution temperature (LCST), of a 

self-regulated mechanochemical adaptively reconfigurable tunable system21. 

A temperature-responsive hydrogel, which triggers the degree of bending of 

micro-pillars, is coupled with an exothermic reaction that takes place when the 

tips of the micro-pillars reach into the upper reactant-rich layer. ‘M’ denotes a 

mechanical action, whereas ‘C’ stands for a chemical reaction. b, Schematic 

mechanism of oscillatory motion of microcapsules in a water column, which 

contain both catalase and glucose oxidase (GOx). Reactions in hydrogen 

peroxide or glucose-rich zones realized by dialysis membranes (DM) at the top 

and bottom of the column lead to a growth or shrinkage, respectively, of an 

encapsulated oxygen bubble and hence to a change in buoyant forces54. Icons 

show which of the four key functional elements are present. Both examples 

feature sensors, actuators and a network and thus can be classified as adaptive 

matter, according to our definition.



Nature | Vol 594 | 17 June 2021 | 351

network is the model system for autonomous particle motility shown 

by Kumar et al.54. Organoclay/DNA microcapsules loaded with the 

enzymes catalase and glucose oxidase regulate the growth or shrinkage 

of encapsulated oxygen bubbles in hydrogen peroxide or glucose-rich 

environments, respectively. The counteractive reactions lead to an 

antagonistic regulation of the size of the oxygen bubbles and hence of 

the effective buoyant force (Fig. 4b). Thus, an enzyme-powered oscilla-

tory vertical movement of colloids in a water column can be achieved.

Garrad et al.55 demonstrate an integrated soft-matter computational 

system for both analogous and digital computation, which should 

enable the realization of adaptive, compliant robots. Opposing conduc-

tive fluid receptors are connected when a conductive fluid is injected 

into the soft matter tube, which is located between the receptors. The 

electrical current generated can be used to control, for example, actua-

tors of soft robots.

Solid-state matter implementations

Whereas sensing and actuation in synthetic matter can be prominently 

implemented using self-organized and soft materials, the realization 

of matter-based information processing seems to be more challeng-

ing. Instead, the technology for information processing in solid-state 

materials is much more advanced, which provides attractive oppor-

tunities. In fact, physical and chemical processes themselves can be 

thought of as a form of computation. Although conventional comput-

ers are built from physical devices (such as transistors), they are based 

on a symbolic notion of computation (that is, on whether a voltage 

is below or above a certain threshold). Unconventional computing 

goes beyond the standard models of computing. Living organisms, in 

particular, can be considered as unconventional computing systems. 

A close look at complex organisms spawned by nature reveals that 

the workflows of information processing build directly on physical 

principles56. It was therefore suggested by Feynman57 and later by 

Yoshihito58 to use matter itself for computing. As Feynman puts it: 

“why should it take an infinite amount of logic to figure out what one 

tiny piece of space-time is going to do?”57. Programmable and highly 

interconnected networks are particularly well suited to carrying out 

these tasks and brain-inspired or neuromorphic hardware aims at pro-

viding physical realizations. Although in the semiconductor industry 

top-down fabrication, using established (inorganic) materials, has 
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Fig. 5 | Neuromorphic materials and systems. a, Phase-change materials 

change their degree of crystallization—and thus their electrical conductance 

and optical absorption—upon exposure to a certain temperature61.  

b, Schematic of the phase-change material Ge2Sb2Te5 (GST) deposited on an 

integrated silicon nitride waveguide and the corresponding simulation of the 

E-field distribution of the transverse electric mode at the surface of the 

waveguide66. The optical absorption of the GST is modulated and therefore 

also the intensity in the photonic waveguide as shown by the E-field 

distribution before (E GST
in ) and after (E GST

out ) the phase-change material deposited 

on the waveguide. Working as a photonic synapse, the demonstrated system 

exhibits a sensor, actuator and memory element. c, Schematic and 

transmission electron microscope images of a 2D material stacked into a 

van der Waals heterostructure68. These materials exhibit unique and tunable 

physical properties, which renders them suitable for neuromorphic systems.  

d, The photoresponsivity of a photodiode consisting of the 2D material WSe2 

can be modulated with two-gate electrodes, which are biased at VG and –VG, 

respectively79. ISC denotes the short-circuit photocurrent of the device. The 

image sensor presented itself constitutes an artificial neural network with a 

sensor and memory element, as well as a network. e, Schematic representation 

of an adaptive gold nanoparticle network that can be controlled electronically 

to represent any Boolean logic gate and hence combines sensor, actuator and 

network. The upper inset shows an electron microscope image; scale bar is  

100 nm (ref. 80). f, Schematic representation of the carbon-nanotube-based 

reservoir computer with input u(n) and control voltages Vk. The values of the 

readout electrodes (ROx) are linearly combined using the learnable weight 

matrix Wout, resulting in output y(n) (ref. 118). This system features a sensor, an 

actuator and a network and can be classified as adaptive matter.
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enabled neuromorphic hardware (for example, IBM’s TrueNorth59 and 

Google’s Tensor Processing Unit60), bottom-up approaches exploit-

ing nanomaterials may provide pathways towards unconventional, 

efficient computation. In combination with the aforementioned mat-

ter implementations, hybrid approaches may eventually lead to the 

realization of intelligent matter.

Neuromorphic materials

Phase-change materials have been a key enabler for brain-inspired 

or neuromorphic hardware, allowing for the realization of artificial 

neurons and synapses in artificial neural networks61. Their program-

mability in either an amorphous or a crystalline state via Joule heating 

is exploited to realize fast, accessible, room-temperature, non-volatile 

memory devices (Fig. 5a). Their memristive behaviour—that is, the 

continuous transition between the two phases—and the cumulative 

change in crystallization, further renders phase-change materials suit-

able for brain-inspired computation61,62, where they typically embody 

synaptic weights and/or the nonlinear activation function. Electrical 

devices rely on the dependence of the electrical resistance on the mate-

rial’s state, and use an applied electrical voltage for both switching and 

reading out63. In contrast, in photonic devices, a high-power-density 

light pulse is used to adjust the degree of crystallinity, which changes 

the absorption of light in the material64–66 (Fig. 5b).

Furthermore, two-dimensional (2D) materials, such as graphene, 

MoS2, WSe2 or hexagonal boron nitride (hBN), have emerged in the 

realization of neuromorphic devices, allowing compact artificial neural 

networks to be devised. Consisting of a single atomic layer, they exhibit 

unique physical properties distinct from their three-dimensional coun-

terparts67,68. When various 2D crystals are stacked, they build so-called 

van der Waals heterostructures, which enable the engineering of arti-

ficial materials and devices with flexible properties68,69 (Fig. 5c). In 

particular, bandgap tuning of 2D materials, that is, engineering the 

size of the bandgap and even choosing between a direct and indirect 

gap, offers excellent opportunities for electronic and optoelectronic 

devices, in particular for emulating hardware mimics of neural tis-

sue. Such changes can be achieved by simply changing the number of 

stacked layers70,71, intercalation (see ref. 72 and references therein) or 

by inducing a certain amount of strain (by, for example, deforming the 

supporting substrate)73. Since 2D materials are atomically thin, devices 

with high mechanical flexibility can be fabricated. This property is 

especially useful for wearable devices or implants74. Importantly, the 

resistance-switching devices75,76, memristors77 and memory devices78 

have been realized that are essential requirements for neuromorphic 

systems. An intriguing example from Mennel et al.79 is an image sensor 

that simultaneously processes the sensed data. The heart of the device 

is a WSe2 photodiode array in which the synaptic weights are stored by 

modulating the photoresponsivity via multi-gate electrodes (Fig. 5d). 

The sensor can be trained to classify sensed images and, thus, acts as 

an artificial neural network.

Using material learning, computational functionality was experi-

mentally realized in disordered nanomaterial networks80. Arbitrarily 

interconnected gold nanoparticles functionalized with organic mol-

ecules and situated in the centre of eight radially arranged nanoelec-

trodes could be configured into any Boolean logic gate using artificial 

evolution at sub-Kelvin temperatures (Fig. 5e). The current response 

of the nanoparticle network depends in a complex, but deterministic, 

way on the input and configuration voltages applied to the device. 

This is therefore an adaptive materials system. A more recent study 

showed that a similar approach could be used to perform nonlinear 

classification and feature extraction in a disordered network of boron 

dopant atoms in silicon at 77 K (ref. 81). Instead of realizing functionality 

through artificial evolution, it was shown that a deep neural network 

model of a nanoelectronic device can be used to tune the device effi-

ciently to perform various classification tasks via gradient descent82. 

Such models are also very useful for studying more complex devices 

consisting of interconnected nanomaterial networks83. These works 

reveal the potential for exploiting the intrinsic physical properties of 

matter to achieve efficient computing at the nanoscale. The logical 

next step would be to let these systems operate stand-alone and allow 

them to self-adapt their potential landscape to solve computational 

problems. To arrive at such intelligent systems, the element of memory 

should be introduced.

Distributed neuromorphic systems

In neuromorphic systems, information processing and memory are 

co-localized, which rigorously distinguishes them from conventional 

von Neumann architectures. A further merging of the individual  

components—that is, the computational (pre-)processing and storing 

of information with the sensing and actuating part—into a processing 

continuum can be envisioned, which would enable the implementation 

of distributed neuromorphic systems that mimic the entire human 

nervous system. Such network architectures require both unconven-

tional processing designs and efficient signalling pathways between 

the individual components. Promising candidates are optical neural 

network models, since light itself can carry out the computation by 

interacting with matter or interfering with itself without the need for 

predefined pathways. In addition, they allow for data processing at 

the speed of light (in the medium) and with an extremely low power 

consumption compared to their electrical counterparts. An illustra-

tive example of an optical neuromorphic system is given by Lin and 

co-workers84. The authors present an all-optical deep-learning neural 

network based on several layers of 3D-printed diffractive optical ele-

ments. Each micrometre-sized pixel of a diffractive optical element 

represents a neuron with a certain reflection or transmission coef-

ficient. Thus, the densely packed neurons build a continuous layer, in 

which each neuron is connected to the next layer’s neurons by optical 

diffraction. Hence, when light is propagating through the different 

diffractive layers, information is simultaneously processed, similar 

to the pre-processing of data in human skin before it is transferred to 

the brain via the nervous system. A similar, but integrated example 

is the inverse-designed metastructure proposed by Estakhri et al.85, 

which can solve linear integral equations with the help of microwaves. 

The permittivity of a wide waveguide section is modulated in such a 

way that the guided modes interfere and perform the desired integral 

operator. In both examples, communication and computation take 

place at the site of memory, whereas there is no sensor or actuator ele-

ment in the above-defined sense. Hirano et al. reported on stochastic 

resonance without tuning for weak periodic input signals and thermal 

noise in a self-organized Mn12/DNA redox network exhibiting nonlinear  

current−voltage characteristics86.

Feed-forward artificial neural networks are not capable of handling a 

time-dependent input, whereas recurrent neural networks are. Recur-

rent neural networks have feedback loops, which make the input of 

a neuron dependent on its output, introducing dynamic memory87. 

Recurrent neural networks may even show self-sustained temporal 

activation dynamics along its network connections without any input 

at all. However, recurrent neural networks are computationally very 

costly and therefore only feasible for small networks88. A solution 

is provided by reservoir computing, a term that covers three inde-

pendently developed methods for creating and training recurrent 

neural networks: echo state networks89, liquid state machines90, 

and the backpropagation-decorrelation on-line learning rule91. The  

reservoir computer consists of a randomly connected network, the 

‘reservoir’, which is able to create nonlinear projections of inputs into 

a high-dimensional space. To train these networks, a simple super-

vised readout layer is used to learn linear combinations of network 

states. As only the weights of the output layer need to be trained, and 

the random network itself is untouched during the process, the learn-

ing is relatively fast and efficient compared to other neural network 

methods. Reservoir computing is used for temporal problems such 
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as chaotic time-series analysis or prediction and speech recognition. 

These tasks require short-term memory, also called fading memory, 

with a timescale comparable to that of the input signals. This type of 

memory should not be confused with the long-term memory that we 

have identified as being one of the required elements for realizing 

intelligent matter. As long as the weights of the output layer need to 

be trained in a supervised fashion, these systems do not self-adapt and 

are therefore not intelligent according to our definition.

Implementations in dynamic systems include electronic circuits92,93, 

a bucket of water94, gene regulation networks of Escherichia coli bacte-

ria95,96, DNA reservoir computing97 and a cat’s primary visual cortex98. 

In addition, there have been demonstrations of reservoir computing in 

optical systems using delay lines99–103, memristor devices104–110, atomic 

switch networks111–113 as well as carbon nanotube systems114–116.

Every matter-based reservoir tends to have its own physical prob-

lems. For memristive cross-bar arrays, variation in memristors is 

considered as a common problem. Alternatively, there are potential 

drawbacks in the reservoir model used, for example, optoelectronic 

systems are based on a single nonlinear node and a delay line103,117, mak-

ing them sequential in nature and often quite bulky—however, they get 

around being sequential simply through the speed and bandwidth at 

which they can operate. Instead of designing a material substrate to be 

a good reservoir, one can also use material learning to let the reservoir 

emerge from the system. Different material configurations can have 

very different reservoir performance114,118; see Fig. 5f. Recent advances 

in physical reservoir computing are reviewed by Tanaka et al.119.

Outlook and perspectives

Challenges ahead lie in developing effective methods for fabrication, 

upscaling and control of intelligent matter. Intelligent matter must 

contain dynamic materials that possess a substantial degree of confor-

mational freedom, mobility and exchange of nanoscale components. 

This implies that the interactions between nanoscale components 

must be weak enough to be manipulable by external stimuli. Moreover, 

such matter must show a certain degree of internal organization of 

nanoscale components, so that feedback and long-term memory can be 

embedded. Furthermore, to adequately receive and transmit external 

input, addressability with spatial and temporal precision is needed. 

These requirements are to a large extent contradictory and potentially 

incompatible. Evidently, the key elements of intelligent matter are more 

easily realized separately in different material types, which may be 

potentially incompatible with other materials. We expect that hybrid 

solutions will be required to address challenges in incompatibilities.

Clearly, none of the examples highlighted here exhibits intelligence 

in the sense of perceiving information, storing it and learning from it 

to express adaptive actions and behaviour. So, what could a roadmap 

towards intelligent matter look like? First, we will need demonstra-

tors and design rules for the development of adaptive matter with 

inherent feedback pathways by integrating nanoscale building blocks 

that enable reconfigurability and adaptivity of self-assembled and 

top-down fabricated nanostructures. Second, we must proceed from 

adaptive matter that can process feedback to matter with learning 

capability (‘learning matter’). These materials will be empowered by 

embedded memory functionality, material-based learning algorithms 

and sensing interfaces. Third, we must proceed from learning matter to 

truly intelligent matter, which receives input from the environment via 

sensory interfaces, shows a desired response encoded via embedded 

memory and artificial networks, and can respond to external stimuli via 

embedded transducers. The development of intelligent matter will thus 

require a concerted, interdisciplinary and long-term research effort.

Ultimately, complete system-level demonstrations are necessary to 

expedite the use of intelligent matter given that overall performance is 

the collective response of components and connections. A wide variety 

of technological applications of intelligent matter can be foreseen and 

the co-integration with existing AI and neuromorphic hardware will 

be particularly attractive. In this respect, bio-compatible implemen-

tations will also be required for applications in the life sciences and 

bio-cybernetic organisms.
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