
A Survey of Ranking Algorithms

Alessio Signorini
alessio-signorini@uiowa.edu

Department of Computer Science
University of Iowa

September 11, 2005

Abstract

With the huge number of web pages that exist today, search engines assume an important role in
the current Internet. But even if they allow to find relevant pages for any search topic, nowadays the
number of results returned is often too big to be carefully explored. Moreover, the needs of the users
vary, so that what may be interesting for one may be completely irrelevant for another. The role of
ranking algorithms is thus crucial: select the pages that are most likely be able to satisfy the user’s
needs, and bring them in the top positions. In this survey I will cover the most popular algorithms used
today by the search engines: PageRank, HITS and SALSA.

1. Introduction
An efficient ranking algorithm is important in any information retrieval system. In a web search engine,
due to the dimensions of the current web, and the special needs of the users, its role become critical. Recent
studies [1] estimated the existence of more than 11.5 billion pages on the web. Nowadays, it is common
for simple search queries to return thousands or even millions of results. Internet users do not have the
time and the patience to go trough all them to find the ones they are interested in, and often, as has been
shown by some studies [2, 3] they don’t even look beyond the first page of results. Therefore, it is crucial
for the ranking algorithm to output the desired results within the top few pages, otherwise, the search
engine could be considered useless.

Moreover, what the users expect from a web search engine is very different from a traditional
information retrieval system. For example, user who looks for ”microsoft” on a web search engine is
most likely looking for the homepage of the Microsoft Corporation, rather than the page of some random
user complaining about a new Microsoft product, even though in a traditional information retrieval sense,
the latter page may be highly relevant to the query.

1

Web users are most interested in pages that are not only relevant, but also authoritative, that is ”trusted
sources of correct information that have a strong presence on the web”. Thus, in web search the focus
shifts from relevance to authoritativeness. The task of the ranking function becomes to identify and rank
highly the authoritative documents within a collection of web pages.

The web helps this task providing a rich context of information which is expressed by the hyperlinks.
The hyperlinks define the ”context” in which a web page appears: intuitively, a link from page p to page
q denotes an endorsement for the quality of page q. In this sense, we can think of the web as a network
of recommendations which contains information about the authoritativeness of the pages. The task of
the ranking function becomes to extract this informations and produce ranking scores in according to the
relative authority of web pages.

Unfortunately, not all links are informative. There are many kinds of link which confer little or
no authority to the target pages. Consider, for example the intradomain links, whose purpose is to
provide navigational aid in a complex web site, or advertisements/sponsorship links. Another kind of
non-informative links are those which result from link-exchange agreements. These are bidirectional links
between two web sites, whose only purpose is to increase the visibility and link popularity of their pages.
Moreover, it is common to find at the bottom of web pages links to the web browser used by the author
for testing, to the download page for Acrobat Reader or to some kind of new software plug-in. Even those
links ”distract” the ranking algorithm, endorsing quality to a page that is often completely unrelated to
the presented topic.

2. Background
In this section I present the necessary background for the following sections. First, I give a brief explanation
on the web graph representation, then I explain the initial input any ranking algorithm, and finally I
introduce some mathematical notation that will be used in the rest of the paper.

2.1. The Web Graph
The web graph has been intensively studied over the last four years. In [6], it has been shown that the
web graph has a bow-tie shape, as illustrated in Figure 1. The picture show a core made by large strongly
connected components (SCC), and four sets of vertices distinguishable from their relation with the core:
(1) the upstream nodes (IN), than can reach SCC but not be reached from SCC; (2) the downstream sets
(OUT), that can be reached by SCC but cannot reach it; (3) the tendrils, or sets made by the elements that
cannot neither reach nor be reached from the core; and (4) the disconnected components, a small group of
vertices not connected to the bow-tie. In the same paper has been also demonstrated that many features
of the web graph follow a power law distribution (i.e. a function such as 1

kα). For instance, the in-degree
and out-degree distributions follow a power law with different values of α.

Ranking algorithms have to be aware of the web structure to improve their performance, since
capturing a snapshot of the entire web is not feasible. Millions of web pages are created or disappear
every minute, and most of them are never referenced anywhere else. Thus, the ranks of the pages will (and
have to) change constantly, while the crawler updates its database with both new and deleted pages.

2

Figure 1: Structure of the web graph

2.2. The Initial Set of web Pages
Every ranking algorithm based on link analysis starts with a set of web pages. Dedepending on how this
set is obtained, algorithms are classified in two subcategories: query independent algorithms, and query
dependent algorithms. The first category contains the PageRank algorithm by Brin and Page: it starts
with a set gene rated by all the web pages captured by the spider and produces ranking scores for all of
them, regardless of the query. In contrast, the HITS algorithm by Kleinberg belongs to the second class
of algorithms. It uses the user query to obtain a root set of pages, and augment it adding pages linked, or
that link to, pages of the root set.

Given the set of web pages, the next step is to construct the underlying hyperlink graph. A node
is created for every web page, and a directed edge is placed between two nodes if there is an hyperlink
between the corresponding web pages. In some systems, as in the one of Bharat and Henzinger [4], a
weight (estimated with content analysis of the web pages) is assigned to each edge. The resulting graph
is simple: no self-loops are allowed, and even if there are multiple links between two pages only a single
edge is placed. In addition, links within the same web site are usually removed, since they serve only for
navigation and do not convey any endorsement. After refinement, isolated nodes are removed from the
graph.

2.3. Mathematical Notations
Let P denote the resulting set of nodes, and let n be the size of the set P . Let G = (P,E) denote the
underlying graph, where each directed edge connects two nodes if a link exists between them. The input
of any link analysis algorithm is the adjacency matrix W of the graph G where W [i, j] = 1 if there is a
link from node i to node j, and zero otherwise. The output of the algorithms is an n-dimensional vector
a, where ai is the authority weight of node i in the graph. These weights are used to rank the pages.

For some node i, we will denote by B(i) = {j : W [j, i] = 1} the backward links set, that is, the set of
nodes that point to node i. Similarly we denote by F (i) = {j : W [i, j] = 1} the forward links set, that is,
the set of nodes pointed to by node i.

3

Furthermore, we define an authority node in the graph G to be a node with non-zero in-degree, and a
hub node in the graph G to be node with a non-zero out-degree. We will use the letter A to denote the
set of authority nodes, and the letter H to denote the set of hub nodes. Consequentially we have that
P = A ∪H.

We define the undirected authority graph Ga = (A,Ea) on the set of authorities A, as the graph where
we place an edge between two authorities i and j, if B(i) ∩B(j) 6= 0.

3. The Algorithms
In this section I will provide a description of the Link Analysis Ranking (LAR) algorithms currently used
by most well-known search engines. After a brief introduction of the heuristic InDegree algorithm, father
of all the following ranking algorithms, I will describe the PageRank algorithm used by Google and the
HITS algorithm used by Teoma. The last algorithm presented is an extention of the HITS algorithm called
SALSA.

3.1. In-Degree
A simple heuristic that can be viewed as the predecessor of all link analysis ranking algorithms is to rank
the pages according to their popularity. The popularity of a page on the web is measured by the number of
pages that point to it. We refer to this algorithm as the InDegree algorithm, since it ranks pages according
to their in-degree in the graph G. That is, for every node i, ai = |B(i)|. This simple heuristic was applied
by several search engines (Altavista, HotBot, ...) in the early days of web Search.

In one [5] of his studies, Kleinberg makes a convincing argument that this algorithm is not
sophisticated enough to capture the authoritativeness of a node, even when restricted to a query dependent
subset of the web. In addition, if search engines would apply this simple ranking scheme it would be very
easy for a web master to influence authoritary: they could simply create thousands of linked pages that
point to the ”authoritative” page.

3.2. PageRank
The following description of the PageRank algorithm follows closely the description given by Brin and Page
in their paper ”The PageRank Citation Ranking: Bringing Order to the web”.

The intuition underlying the InDegree algorithm is that a good authority is a page pointed to by
many other pages in the graph G. Brin and Page [7] extended this idea further by observing that not
all links have the same importance. For example, if a web page has a link off the Yahoo! home page, it
may be just one link but it is a very important one. This page should be ranked higher than many pages
with more links but from obscure places. PageRank is an attempt to see how good an approximation of
importance can be obtained just from the link structure.

Web pages vary greatly in terms of the number of backlinks they have. For example, the UI Computer
Science Department home page has1 269 backlinks, compared to the Netscape page that has 50,900
backlinks (some other web pages have just few links). Generally speaking, highly linked pages are more

1At the time of this writing, in according to the Google database

4

”important” than pages with just few links2. The PageRank algorithm provides a more sophisticated
method for doing citation counting. The reason that PageRank is interesting is that there are many cases
where simple citation counting does not correspond to our common sense notion of importance. Based
on the discussion above, is it possible to give the following intuitive description of PageRank: a page has
high rank if the sum of the ranks of its backlinks is high. This covers both the case when a page has many
backlinks and when a page has just a few (but highly ranked) backlinks.

Let u be a web page. Then let Fu be the set of pages u points to and Bu the set of pages that point to
u. Let Nu = |Fu| the number of links from u and let c be a factor used for normalization (so that the total
rank of all web pages is constant). We can now define a simple ranking R which is a slightly simplified
version of the actual PageRank:

R(u) = c
∑

v∈Bu

R(v)
Nu

This formalizes the intuition in the previous section. The rank of a page is divided among its forward
links evenly to contribute to the ranks of the pages they point to. Note that c < 1 because there are a
number of pages with no forward links and their weight is lost from the system. The presented equation
is recursive but it may be computed by starting with any set of ranks and iterating the computation until
convergence.

There is a small problem with this simplified ranking function. Consider two web pages that point
to each other but to no other page, and suppose there is some web page which points to one of them.
Then, during iteration, this loop will accumulate rank but will never distribute any rank (since there are
no outedges). The loop forms a sort of trap (rank sink). To overcome this problem of rank sinks, we need
to introduce a rank source:

Definition 1 Let E(u) be some vector over the web pages that corresponds to a source of
rank. Then, the PageRank of a set of web pages is an assignment, R′, to the web pages which
satisfies

R′(u) = c
∑

v∈Bu

R′(v)
Nu

+ cE(u)

such that c is maximized and ‖R′‖1 = 1 (‖R′‖1 denotes the L1 norm of R′).

where E(u) is some vector over the web pages that corresponds to a source of rank. Note that if E
is all positive, c must be reduced to balance the equation. Therefore, this technique corresponds to a
decay factor. In matrix notation we have R′ = c(AR′ + E). Since ‖R′‖1 = 1, we can rewrite this as
R′ = c(A + E ∗ 1)R′ where 1 is the vector consisting of all ones. So, R′ is an eigenvector of (A + E ∗ 1).

Random Surfer Model The definition of PageRank above has another intuitive basis in random walks
on graphs. The simplified version corresponds to the standing probability distribution of a random walk
on the graph of the web. Intuitively, this can be thought as modeling the behavior of a ”random surfer”.

2By analogy, simple citation counting has been used in the past to speculate on the future winners of the Nobel Prize!

5

The ”random surfer” simply keeps clicking on successive links at random. However, if a real web surfer
ever gets into a small loop of web pages, it is unlikely that the surfer will continue in the loop forever.
Instead, the surfer will jump to some other page. The additional factor E can be viewed as a way of
modeling this behavior: the surfer periodically ”gets bored” and jumps to a random page chosen based on
the distribution E. Thus, each step in the PageRank algorithm is of one of two types:

1. From the given state s, choose at random an outgoing link of s, and follow that link to the destination
page.

2. Choose a web page uniformly at random, and jump to it.

PageRank chooses a parameter d, 0 < d < 1, and each state transition is of the first transition type with
probability d and of the second type with probability 1 − d. Since PageRank examines a single random
walk on the entire WWW, the ranking of web pages in Google is independent of the search query (a global
ranking), and no distinction is made between hubs and authorities.

Dangling Links One issue with this model is created by dangling links. These are links that point to
a page with no outgoing links. There are lots of them in the web graph, and it is not clear if their weights
should be distributed or not. Often these dangling links are simply pages that have not been downloaded
yet (it is not easy to sample the entire web!) by the crawling engine.

Because dangling links do not directly affect the ranking of any other page, they can simply be
removed from the system until all the ranks are calculated. After that, they can be added back without
affecting things significantly. Clearly, removing a link from a page will change the distribution of its weight
across the others. However, the removal of the dangling links should not have a big impact on the final
ranks.

Computing PageRank The computation of PageRank is fairly straightforward if we ignore the issues
of scale. Let S be almost any vector over web pages (for example E) and let A be a square matrix with
the rows and column corresponding to web pages. Let Au,v = 1/Nu if there is an edge from u to v and
Au,v = 0 if not. If we treat R as a vector over web pages, then we have R = cAR. So R is an eigenvector of
A with eigenvalue c. In fact, we want the dominant eigenvector of A. It may be computed by repeatedly
applying A to any nondegenerate start vector. With these basis PageRank may be computed as follows:

R0 ←− S

loop :
Ri+1 ←− ARi

d ←− ‖Ri‖1 − ‖Ri+1‖1
Ri+1 ←− Ri+1 + dE

δ ←− ‖Ri+1 −Ri‖1
while(δ > ε)

6

Note that the d factor increases the rate of convergence and maintains ‖R‖1. An alternative normalization
is to multiply R by the appropriate factor. The use of d may have a small impact on the influence of E.

Modifications Over the last few years the interest around PageRank has increased progressively.
Google established its leadership in the search engine market, and a lot of studies have been made on
how to accelerate the calculation of the PageRank. McSherry at Microsoft Research reformulated [15]
the power iteration algorithm in such a way that the nodes do not communicate anymore the current
probability values to their neighbors, instead, they communicate only changes in the probability value. This
reformulation enabled large degree of flexibility in the manner in which nodes update their value, leading
to faster convergence, efficient incremental updating, and a robust distributed implementation. Kamvar,
Haveliwala and Golub at Stanford University studied [11] some adaptive methods for computation of the
PageRank. Some of their papers talk about exploiting the block structure of the web and the use of some
extrapolation methods to accelerate the computations. Langville and Meyer proposed [12] some reordering
of the algorithm steps that should increase the speed in the calculation of the ranks. Other studies, such
as the one [13] of Boldi, Santini and Vigna at the University of Milan, studied how the behavior of the
PageRank algorithm changes according to the damping factor α, giving also a demonstration of how the
k-th iteration of the power method gives exactly the same value of a MacLauring polynomial of degree k.
Finally, a recent study [14] of Pan-Chi Lee, Golub and Zenios at the Stanford University proposed a fast
two-stage algorithm for the computation of the PageRank.

3.3. HITS
The following description of the HITS algorithm follows closely the description given by Kleinberg in his
paper ”Authoritative Sources in a Hyperlinked Environment”.

Independent of Brin and Page, Kleinberg [5] proposed an improved notion for the importance of a
web page. While PageRank computes the page ranks on the entire web graph, the HITS algorithm tries
to distinguish between hubs and authorities within a subgraph of relevant pages. Given any set of web
pages, and a specific query string δ, we could, for example, restrict the analysis to the set Qδ of all pages
containing the query string. Unfortunately this has two significant drawbacks: first, this set may still
contain well over a million pages (and thus a considerable computational cost), and second, some or most
of the best authorities may not belong to this set since the query string is not contained in their pages.
However strange this may sound, it is very common on the current web: lots of corporate’s home pages
are, for example, made out of graphics only and do not contain any text3, and not all the car manufacturer
companies have the word ”car” or ”automobile” on their home pages. Ideally, the collection Sδ of pages
should have the following properties:

1. Sδ is relatively small

2. Sδ is rich in relevant pages

3. Sδ contains most (or many) of the strongest authorities
3Adding OCR capabilities to the web crawlers is possible, but has not yet been done

7

By keeping Sδ small, we are able to afford the computational cost of applying a non-trivial algorithm, and
by ensuring it is rich in relevant pages we facilitate the task of finding good authorities, as they are likely
to be heavily referenced within Sδ.

As stated in the introduction, the HITS algorithm starts with a root set of pages R, obtained using
a text-based search engine. This set is then increased adding the pages pointed to, or that point to, any
page in the root set. To be sure that the mechanism does not degenerate, a parameter d is introduced: we
allow a single page in Rδ to bring in at most d pages pointing to it into Sδ.

Figure 2: Expansion of the root set R

This method provides a small subgraph Gδ that is relatively focused on the query topic, with many
relevant pages and strong authorities. The problem is now how to extract those authorities purely trough
the analysis of the link structure of Gδ. The simplest approach would be to order pages by their in-degree.
This method didn’t work in the entire web graph, as argued in the introduction, but it may work now that
we have explicitly constructed a small collection of relevant pages containing most of the authorities that
we want to find. These authorities would both belong to Gδ and be heavily referenced by pages within Gδ.

Unfortunately this approach still retains some significant problems. For example, with the query
"Java" the pages with the largest in-degree consist in www.gamelan.com and java.sun.com, together
with pages advertising for Caribbean vacations and the home page of Amazon Books. This mixture is
representative of the type of problems that arises with this simple ranking scheme: while the first two of
these pages should certainly be viewed as ”good” answers, the others are not relevant to the query topic
(they have large in-degree but lack any thematic unity). This demonstrates the difficulty of distinguishing
strong authorities from pages that are simply ”universally popular”. At this point one could wonder
whether solving these problems would require making further use of the textual context of the pages,
rather than just the link structure of Gδ.

8

This is not the case. It is in fact possible to extract information more effectively from the links, starting
from the following observation:

Definition 2 Authoritative pages relevant to the initial query should not only have large in-
degree, but since they are all authorities on a common topic, there should also be considerable
overlap in the sets of pages that point to them.

Thus, in addition to highly authoritative pages we expect to find what could be called hub pages: these are
pages that have links to multiple relevant authoritative pages. It is these hub pages that ”pull together”
authorities on a common topic, and allow us to throw out unrelated pages of large in-degree. Hubs and
authorities exhibit what could be called a mutually reinforcing relationship: a good hub is a page that
points to many good authorities, while a good authority is a page that is pointed to by many good hubs.

Figure 3: Examples of hubs and authorities

The TKC effect A Tightly-Knit Community is a small but highly interconnected set of web pages.
Roughly speaking the TKC effect occurs when such a community scores high in link-analyzing algorithms,
even though the sites are not authoritative on the topic, or pertain to just one aspect of the topic. Studies
[8] of Lempel and Moran indicate that the mutual reinforcement approach is vulnerable to this effect and
will sometimes rank the sites of a TKC in unjustifiably high positions. In their work, they provided a
combinatorial construction of an infinite number of topologies in which the TKC effect is demonstrated.

For all k ≥ 3 they build a collection Ck that contains two communities: a community Cs, with a
small number of hubs and authorities where every hub points to all of the authorities, and a much larger
community Cl, where the hubs points only to a portion of the authorities. The topic covered by Cl appears
to be the dominant topic of the collection, and is probably of wider interest on the WWW. Since there are
many Cl-authoritative pages, the hubs do not link to all of them, whereas the smaller Cs community is
densely interconnected. The TKC effect occurs when the pages of Cs are ranked higher than those of Cl,
as happen with the HITS approach. A special case of this problem was already identified by Bharat and
Henwinger in 1998.

9

Computing HITS rank Two weights are assigned to each page p: a non-negative authority weight
denoted by ap and a non-negative hub weight denoted by hp. We maintain the invariant that the weights
of each type are normalized so their squares sum to 1:

∑
p∈Sδ

(ap)2 = 1 and
∑

p∈Sδ
(hp)2 = 1. The pages

with a larger a-value are ”better” authorities, as the pages with a larger h-value are ”better” hubs.
Numerically, the mutually reinforcing relationship between hubs and authorities can be expressed as

follows: (1) if p points to many pages with large a-values, then it should receive a large h-value; if p is
pointed to by many pages with large h-values, then it should receive a large a-value. This motivates the
definition of two operations on the weights, denoted by I and O. Given weights ap and hp, the I operation
updates the a-weights as follows

ap ←−
∑

q:(q,p)∈ε

hq

similarly the O operation updates the h-weights as follows:

hp ←−
∑

q:(p,q)∈ε

aq

Thus, the I and O operations are the basic means by which hubs and authorities reinforce one another.
To find the desired ”equilibrium” values for the weights, one can apply the I and O operations in an
alternating fashion, and see whether a fixed point is reached. The HITS algorithm can be stated as:

Iterate(G,k)
G: a collection of n linked pages
k: a natural number

Let z denote the vector (1, 1, 1, ..., 1) ∈ Rn

Set a0 = z
Set h0 = z
For i = 1, 2, ..., k

Apply the I operation to (ai−1, hi−1), obtaining new a-weights a′i
Apply the O operation to (a′i, hi−1), obtaining new h-weights h′i
Normalize a′i, obtaining ai

Normalize h′i, obtaining hi

Return (ak,hk)

Similar-Page Queries The HITS algorithm, with some modifications, can be adapted to find similar
pages, given a page p. Until now the initial root set has been created starting with query string δ. To
accomplish our new task we have to create the root set formulating this new request to the search engine
”Find t pages pointing to p”. Thus, we will assemble root set Rp consisting of t pages that point to p; we
will then grow this into a base set Sp as before. The result will be a subgraph Gp in which we can search
for hubs and authorities using the known algorithm. This approach is very powerfull: compiling a list of
similar pages using only text-based methods would be very hard since most of the home web pages today
consist almost entirely of images with very little text. In addition, often the text that they contain has
very little overlap.

10

Figure 4: Transforming the set of nodes into a bipartite graph

3.4. SALSA
The following description of the SALSA algorithm follows closely the description given by Lempel and
Moran in their paper ”SALSA: The Stochastic Approach for Link-Structure Analysis”.

An alternative algorithm, that combines ideas from both PageRank and HITS, was proposed [8] by
Lempel and Moran. The SALSA algorithm performs a random walk on the bipartite hubs-and-authorities
graph, alternating between the hubs and authority sides. The random walk starts from some authority
node selected uniformly at random and then proceeds by alternating between backwards and forward steps.
When at a node on the authority side of the bipartite graph, the algorithm select one of the incoming links
uniformly at random and moves to a hub node on the hub side. When at node on the hub side the algorithm
selects one of the outgoing links uniformly at random and moves to an authority node.

The authority weights are defined to be the stationary distribution of this random walk. Formally, the
Markov Chain of the random walk has transition probabilities

Pa(i, j) =
∑

k:k∈B(i)∩B(j)

1
|B(i)|

1
|F (k)|

Recall that Ga = (A,Ea) denotes the authority graph, where there is an (undirected) edge between two
authorities if they share an hub. This Markov Chain corresponds to a random walk on the authority graph
Ga, where we move from authority i to authority j with probability Pa(i, j). Let Wr denote the matrix
derived from matrix W by normalizing the entries such that, for each column, the sum of the entries is
1. Then the stationary distribution of the SALSA algorithm is the principal left eigenvector of the matrix
Ms = W T

c Wr.
If the underlying authority graph Ga consists of more than one component, then the SALSA algorithm

selects a starting point uniformly at random and performs a random walk within the connected component
that contains that node. Let j be a component that contains node i, let Aj denote the set of authorities
in the component j, and Ej the set of links in the component j.

11

Then the weight of authority i in component j is

ai =
|Aj |
|A|
|B(i)|
|Ej |

If the graph Ga consist of a single component (we refer to such graphs as authority connected graphs),
that is, the underlying Markov Chain is irreducible, then the algorithm reduces to the InDegree algorithm.
Furthermore, even when the graph Ga is not connected, if the starting point of the random walk is selected
with probability proportional to the ”popularity” (in-degree) of the node in the graph G, then the algorithm
again reduces to the InDegree algorithm.

The SALSA algorithm can be thought as a variation of the HITS algorithm. In the I operation of
the HITS algorithm the hubs broadcast their weights to the authorities, and the authorities sum up the
weight of the hubs that point to them. The SALSA algorithm modifies the I operation so that instead of
broadcasting, each hub divides its weight equally among the authorities to which it points. Similarly, the
algorithm modifies the O operation so that each authority divides its weight equally among the hubs that
point to it. Therefore,

ai =
∑

j:j∈B(i)

1
|F (j)|

hj and hi =
∑

j:j∈F (i)

1
|B(j)|

aj

However the SALSA algorithm does not really have the same ”mutually reinforcing structure” that
Kleinberg’s algorithm does. Indeed, ai = |Aj |

|A|
|B(i)|
|Ej | , the relative authority of site i within a connected

component is determined from local links, not from the structure of the component.

3.5. Further extensions
The seminal works of Kleinberg [5], and Brin and Page [7] were followed by a number of extensions and
modifications. In one of their works Bharat and Henzinger considered an improvement on the HITS
algorithm, called topic distillation, that used textual information to weight the importance of nodes and
links. Rafiei and Mendelzon presented a variant of the HITS algorithm that uses random jumps, similar
to SALSA. Jordan, Ng and Zheng proposed a similar randomized version of HITS called randomized HITS
and an extension of it that uses multiple eigenvectors. Tomlin generalized the PageRank algorithm to
compute flow values for the edges of the web graph that allows to compute the TrafficRank for each page.

A different line of research exploits the application of probabilistic and statistical techniques for
computing rankings. The pHITS algorithm assumes a probabilistic model in which a link is caused by latent
”factors” or ”topics”. It uses the Expectation Maximization (EM) algorithm to compute the authority
weights of the pages. Following that work Hofmann proposed a similar algorithm which also takes into
account the text of the documents.

Another interesting line of research aims to combine PageRank with temporal information [9]. On
the web, the temporal information for outgoing links is under the control of source pages and is, therefore,
susceptible to bias. On the other hand, the incoming links reflect the attention that a web page has
attracted and being more democratic in their nature, they are less susceptible to manual influence. Among
those incoming links, the link emanating from the random surfer’s current position can be picked out and
treated in a special way. These observations suggest that the probability of the random surfer choosing y

12

when leaving their current page x is a combination of many factors: the freshness f(y) of the target page
y, the freshness f(x, y) of the link from x to y, and the average freshness of all incoming links of y. In a
similar way, the random jump probability of a target page y is a (weighted) combination of the freshness of
y, the activity of y, the average freshness of the incoming links of y, and the average activity of the pages
that link to y.

In addition, there are many modification of the PageRank which consider graphs with different levels of
granularity (HostRank, PageRank on host instead of web pages), or with different link weight assignments
(internal, external, etc.). Another interesting line of research tried to avoid the use of an arbitrary chosen
teleportation factor (α) in the PageRank algorithm. In particular, Boldi and Vigna in one of their papers
provided a closed formula for computing the PageRank using a Maclaurin polynomial of degree k. Using
that formula the PageRank of a page can be seen as a rational function of α and can be approximated quite
efficiently. This fact is used in the paper to define a new form of ranking, the TotalRank, that averages
PageRanks over all possible α-s (a form of ranking without damping).

4. Comparisons

The following results are taken by a recent paper [10] on link Analysis Algorithms (LAR) written by
Borodin, Roberts, Rosenthal and Tsaparas, at the beginning of this year. In their study, the authors
compared the known algorithms introduced in Section 2 with some new algorithms described in their
paper.

They studied the rankings produced by the algorithms, and how they relate to each other. In addition,
they tried assess the quality of the algorithms and to analyze how theoretically predicted properties show
in practical settings.

4.1. The queries
The ranking algorithms have been tested using the following 34 queries:

abortion, affirmative action, alcohol, amusement parks, architecture, armstrong, automobile industries,
basketball, blues, cheese, classical guitar, complexity, computational complexity, computational
geometry, death penalty, genetic, geometry, globalization, gun control, iraq war, jaguar, jordan, moon
landing, movies, national parks, net censorship, randomized algorithms, recipes, roswell, search engines,
shakespeare, table tennis, weather, vintage cars

Many of those queries have already appeared in previous works, and have been used for sake of comparison.
The remaining queries have been chosen by the authors because they corresponds to topics for which there
are opposing communities, such as ”death penalty” and ”gun control”, or because they are of interest
to different communities depending on the interpretation of the word (e.g., ”jordan” or ”complexity”).
The objective is to observe how different algorithms represent these different (and usually unrelated)
communities in the top positions of the ranking. Is also interesting to observe the behavior of the algorithms
when the query is shifted from a broad topic as ”geometry” or ”complexity” to a more specific subset of

13

the topic as ”computational geometry” or ”computational complexity”. Some of the queries, such as
”automobile industries” or ”search engines”, have been selected to study the behavior of the algorithms
when the most relevant results do not contain the query words.

4.2. Base Set construction

For the construction of the base set the method described by Kleinberg has been followed. The starting
root set was obtained querying Google and downloading the first 200 pages returned by the search engine.
The set is then augmented with pages that point to, or are pointed to by, a page in the root set. To discover
the web pages that point to a page already in the root set the link: feature of Google has been used, and
the first 50 results have been added to the base set. Finally, the links between the pages in the base set
have been extracted to construct the hyperlink graph.

Then, using a heuristic function of their own design, they tried to remove from the obtained graph
the navigational links. For each address they compared the first 3 bytes of the IP address. If they were
the same, the link was labeled as navigational and discarded. If they differed, they looked at the actual
URLs. For each URLs in the form ”http : //string1/string2/...” the domain identifier was chosen to
be string1. The domain is of the form ”x1.x2. · · · .xk”. If k ≥ 3 they used x2. · · · .xk−1 as the domain
identifier, otherwise, they used only x1. If the domain identifiers were the same for both the source and
target pages of the link, it was labeled as navigational and removed. After all the navigational links were
removed, they also eliminated any isolated pages from the set to produced the final base set P and the
graph G = (P,E).

4.3. Measures

The measure that they used to evaluate quality of the rankings is precision over top-10. This is the fraction
of documents in the top 10 positions of the ranking that are relevant to the query. This approach is similar
to the one used in the TREC conferences for evaluating web search algorithms.

Presenting their results they also used a more refined notion of relevance. Given a query, they classified
a document as non-relevant, relevant, or highly relevant to the topic of the query. High relevance is meant
to capture the notion of authoritativeness. An highly relevant document is one that you would definitely
want to be in the few first page of results of a search engine. For example, for the query ”movies”, the
web page http://abeautifulmind.com/, the official site for the movie ”A Beautiful Mind”, is relevant to
the topic of movies but it cannot be considered highly relevant. Instead, the page http://www.imdb.com/,
the Internet Movie Data Base (IMDB) site that contains movie informations and reviews, is a page that
is highly relevant to the topic. This is a result that a web user would most likely want to retrieve when
posing that particular query. For each algorithm the authors of the paper estimated the high relevance
ration, the fraction over the top-10 results that are highly relevant.

The study also examined of how the algorithms relate to each other. For the comparison of the
rankings provided by two different algorithms they used the geometric distance measure d1, calculated as:

14

Geometric Distance Measure The LAR vectors can be viewed as points in a n-dimensional
space, thus is possible to use common geometric measures of distance. The distance considered
is the Manhattan distance, that is, the L1 distance of two vectors. Let a1, a2 be the two LAR
vectors, we define the d1 distance measure between a1 and a2 as

d1(a1, a2) = min

n∑
i=1

|γ1a1(i)− γ2a2(i)| ∀γ1, γ2 ≥ 1

where the constants γ1 and γ2 are meant to allow for an arbitrary scaling of the two vectors,
thus eliminating large distances that are caused solely due to normalization factors.

They also introduced another comparison measure called strict rank distance d
(1)
r , calculated as follows:

Strict Rank Distance We define the Kendall’s tau K(1) as the number of bubble sort swaps
that are necessary to convert one permutation to another. The maximum value of Kendall’s
tau is then n(n − 1)/2, and it occurs when one ranking is the reverse of the other. With this
tool, we define the string rank distance d

(1)
r as follows

d(1)
r (a1, a2) =

1
n(n− 1)/2

K(1)(a1, a2)

In the paper they considered two additional comparison parameters, intended to more closely reflect a
user’s point of view: the intersection over top-k, denoted by I(k), that is the number of documents that
the two rankings have in common in the top k results; and the weighted intersection over top-k, denote
by WI(k), that is the averaged intersection over the top k results, where the average is taken over the
intersection over the top-1, top-2, up to top-k.

4.4. User study
In order to assess the relevance of the documents, the authors performed an on-line user study. The
introductory page contained the queries with links to the results, together with some instructions. By
clicking on a query, the union of the top-10 results of all algorithms was presented to the user in a
permuted and anonymous order. The users were then asked to rate each document as ”Highly relevant”,
”Relevant” or ”Non-Relevant”.

The users’feedback have been used in the following way: given the users’feedback for a specified
document, the document has been rated ”Relevant” if the ”Relevant” and ”Highly Relevant” votes were
more than the ”Non-Relevant” votes (ties were resolved in favor of ”Non-Relevant”). Among the documents
that are deemed as ”Relevant”, they rated ”Highly Relevant” the ones for which the ”Highly Relevant”
votes were more than the ”Relevant” ones.

4.5. Results
The average d1 distances table allow us to compare the final rankings returned by the algorithms. A value
close to 0 means that the two algorithms produce very close ranking values, while high values indicate a
very different ranking attribution.

15

Figure 5 clearly show how the SALSA and InDegree algorithm provide practically identical results, while
HITS and PageRank return very different rankings.

HITS PageRank InDegree SALSA
HITS - 1.64 1.22 1.25
PageRank 1.64 - 0.94 0.93
InDegree 1.22 0.94 - 0.11
SALSA 1.25 0.93 0.11 -

Figure 5: Average d1 distance

While interesting from a technical point of view, the average d1 distance table does not provide a good
estimate of the difference between algorithms: for the end user, the ranking values of the returned pages
are not really important, what matters is their order. The average dr distance compares the actual order
in which the results are returned, allowing us to make better ”end-user comparisons”.

HITS PageRank InDegree SALSA
HITS - 0.53 0.42 0.45
PageRank 0.53 - 0.32 0.30
InDegree 0.42 0.32 - 0.08
SALSA 0.45 0.30 0.08 -

Figure 6: Average dr distance

As before, we see how the SALSA and InDegree algorithms provide very similar results. On the other
hand, HITS and PageRank still provide orders that differ for more than the 50%.

The last two comparison parameters, the average intersection over top-k and weighted intersection
over top-k, give us an idea of the actual overlap that exists between the algorithms in a typical first page
of results:

HITS PageRank InDegree SALSA
HITS - 1.1 4.1 4.1
PageRank 1.1 - 3.2 3.1
InDegree 4.1 3.2 - 9.8
SALSA 4.1 3.1 9.8 -

Figure 7: Average I(10) measure

HITS PageRank InDegree SALSA
HITS - 1.0 3.7 3.6
PageRank 1.0 - 2.8 2.7
InDegree 3.7 2.8 - 9.7
SALSA 3.6 2.7 9.7 -

Figure 8: Average WI(10) measure

16

Once more, we see how the InDegree and the SALSA algorithms provide basically the same results, while
HITS and PageRank share, on average, just one result over their top 10.

To understand which algorithm works better from an ”end-user” point of view, we need to know how
many relevant pages are returned by the algorithm in the top-10 results. Table 9 shows the performance
of the four analyzed search engines.

Relevance Ratio High Relevance Ratio
query HITS PageRank InDegree Salsa HITS PageRank InDegree Salsa
abortion 90% 70% 100% 100% 30% 10% 40% 40%
affirmative action 70% 50% 50% 50% 30% 0% 40% 40%
alcohol 90% 60% 90% 90% 60% 30% 60% 60%
amusement parks 100% 30% 30% 50% 50% 10% 30% 40%
architecture 10% 70% 70% 70% 0% 30% 70% 70%
armstrong 20% 50% 20% 20% 0% 0% 0% 0%
automobile industries 10% 10% 20% 30% 0% 10% 10% 20%
basketball 0% 70% 20% 20% 0% 60% 20% 20%
blues 60% 80% 60% 60% 60% 40% 40% 40%
cheese 0% 20% 30% 30% 0% 0% 0% 0%
classical guitar 90% 50% 70% 70% 40% 30% 30% 30%
complexity 0% 50% 50% 50% 0% 30% 20% 20%
computational complexity 90% 70% 90% 90% 30% 30% 30% 30%
computational geometry 100% 40% 70% 70% 40% 20% 40% 40%
death penalty 100% 70% 90% 90% 70% 30% 70% 70%
genetic 100% 70% 100% 100% 80% 20% 70% 70%
geometry 90% 20% 90% 90% 60% 10% 50% 50%
globalization 100% 70% 90% 90% 0% 30% 20% 20%
gun control 0% 50% 100% 100% 0% 50% 70% 70%
iraq war 40% 30% 30% 30% 0% 10% 10% 10%
jaguar 0% 30% 0% 0% 0% 20% 0% 0%
jordan 0% 30% 30% 30% 0% 10% 20% 20%
moon landing 0% 30% 20% 20% 0% 20% 10% 10%
movies 10% 20% 50% 40% 10% 10% 30% 30%
national parks 0% 50% 10% 10% 0% 50% 10% 10%
net censorship 0% 30% 80% 80% 0% 20% 80% 80%
randomized algorithms 70% 80% 80% 80% 0% 40% 10% 10%
recipes 0% 20% 70% 70% 0% 10% 60% 60%
roswell 0% 20% 40% 40% 0% 0% 0% 0%
search engines 80% 90% 100% 100% 60% 70% 100% 100%
shakespeare 100% 70% 100% 100% 0% 20% 50% 50%
table tennis 90% 60% 100% 100% 50% 20% 50% 50%
weather 80% 50% 80% 80% 60% 20% 60% 60%
vintage cars 20% 10% 60% 60% 0% 0% 40% 40%

average 47% 48% 61% 62% 21% 22% 36% 37%
max 100% 90% 100% 100% 80% 70% 100% 100%
min 0% 10% 0% 0% 0% 0% 0% 0%
standard deviation 43% 23% 31% 31% 27% 17% 26% 26%

Figure 9: Relevance and High-Relevance Ratios

As we can see from the averages given, the SALSA algorithm is the best in finding relevant and highly-
relevant pages. Unexpectedly, the very simple InDegree algorithm also scores better than the more
complicated HITS and PageRank algorithms which return only 50% of relevant results among their top-10.

17

In their paper, the authors present some new link analysis ranking algorithms. One of them, combines
together the simple idea of the InDegree algorithm with the intuition of the HITS algorithm to create the
Breadth First Search (BFS) algorithm. In their tests, this new ranking method is shown to outperform the
others with an average relevance ratio of 78% and an average high relevance ratio of 44%.

5. Papers

This survey is based on the following papers:

The PageRank Citation Ranking: Bringing Order to the web by L.Page and S.Brin, January 1998
http://dbpubs.stanford.edu:8090/pub/1999-66

Authoritative Sources in a Hyperlinked Environment by J.M.Kleinberg, May 1999
http://www.cs.cornell.edu/home/kleinber/auth.pdf

SALSA: The Stochastic Approach for Link-Structure Analysis by R.Lempel and S.Moran, April 2001
http://www.cs.technion.ac.il/∼moran/r/PS/lm-feb01.ps

References
[1] A.Gulli, A.Signorini, The Indexable web is More than 11.5 Billion pages, Proceedings of the 14th World

Wide web Conference, 2005

[2] A.Broder, Web Searching Technology Overview, Advanced school and Workshop on Models and
Algorithms for the World Wide web, 2002

[3] B.J.Jansen, A.Spink, J.Bateman, T.Saracevic, Real life Information Retrieval: A study of user queries
on the web, ACM SIGIR Forum, 1998

[4] K.Bharat, M.R.Henzinger, Improved algorithms for topic distillation in a hyperlinked environment,
Research and development in Information Retrieval, 1998

[5] J.Kleinberg, Authoritative sources in a hyperlinked environment, Journal of ACM (JASM), 1999

[6] A.Broder, R.Kumar, F.Maghoul, P.Raghavan, S.Rajagopalan, R.Stata, A.Tomkins, J.Wiener, Graph
structure of the web, Proceedings of the Computer Networks and ISDN Systems, 2000

[7] S.Brin, L.Page, The anatomy of a large-scale hypertextual web search engine, Proceedings of the 7th
International World Wide web Conference, 1998

[8] R.Lempel, S.Moran, The stochastic approach for link-structure analysys (SALSA) and the TKC effect,
Proceedings of the 9th International World Wide web Conference, 2000

[9] K.Berberich, M.Vazirgiannis, G.Weikum, T-rank: Time-aware authority ranking, Proceedings of 3rd
International Workshop on Algorithms and Models for the web-Graph, 2004

18

[10] A.Borodin, G.O.Roberts, J.S.Rosenthal, P.Tsaparas, Link analysis ranking: algorithms, theory, and
experiments, ACM Transactions on Internet Technology, 2005

[11] S.Kamvar, T.Haveliwala, G.Golub, Adaptive methods for the computation of PageRank, Technical
report of Stanford University, 2003

[12] A.N.Langville, C.D.Meyer, A Reordering for the PageRank problem, Submitted to SIAM Journal on
Scientific Computing

[13] P.Boldi, M.Santini, S.Vigna, PageRank as a Function of the Damping Factor, Proceedings of the 14th
World Wide Web Conference, 2005

[14] C.P.Lee, G.H.Golub, S.A.Zenios, A fast two-stage algorithm for computing PageRank, Technical
report of Stanford University, 2003

[15] F.McSherry, A Uniform Approach to Accelerate PageRank Computation, Proceedings of the 14th
World Wide Web Conference, 2005

19

