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Abstract-In this paper we solve for the drag experienced by a hot rigid sphere which melts its way through a
cold medium. The temperature ofthe sphere is maintained by internal heat generation. The cold medium is
solid and deforms only when the hot sphere heats it above its melting point. We find that the flow isconfined to
a thin layer about the forward hemisphere when the Peeler number is much greater than a known function of
the Stefan number. We apply our results to the China Syndrome problem and show that in about 2000years a

nuclear reactor core could melt its way through the solid earth to the earth's core.

l'\O~IEl'\CLATURE

Cp specific heat capacity of melt

Fb buoyancy force

Fd drag force

9 acceleration due to gravity

II internal heat generation rate per unit mass

llo initial internal heat generation rate per unit

mass

k thermal conductivity of melt

L latent heat of fusion

L reduced latent heat of fusion,

L+cp(Tm-Too )

P pressure

Po pressure at equator

Pe Peclet number, u-R]«

Q total heat flux out of sphere

R radius of sphere

Re Reynolds number, PmlloRf'l

Ste Stefan number, cp(To- TmljL'

t time

T temperature

Tm melting point of medium

To temperature on surface of sphere

Too ambient temperature of medium

u tangential velocity

fi tangential velocity averaged over the

molten layer

110 velocity of sphere

v normal velocity

x distance tangential to sphere

y distance normal to sphere

Greek symbols

o molten layer thickness

!J.p density dilTerence between sphere and

molten medium

'1 dynamic viscosity of melt

o colatitude

0* colatitude at which lubrication

approximation becomes invalid

tc thermal dilTusivity of melt

Pm density of melt

P, density of sphere

I. )1'\TRODUCTI01'O

STOKES'S problem is the calculation of the drag

experienced by a rigid sphere which moves at constant

velocity through a viscous medium. In this paper we

consider Stokes's problem with melting. We calculate

the drag experienced by a hot rigid sphere which melts

its way through a cold rigid solid. Heat transfer from the

sphere melts the medium and the flow of the viscous

melt allows the sphere to move through the solid

medium. The problem has a number of possible

applications to geophysics, One example is magma

migration [1]. A magma body may melt its way

through the solid mantle and crust of the earth. Another

is core formation [2]. Bodies ofiron may have melted

their way through the earth's mantle during the

formation of the earth's core. Detached lithospheric

slabs may also fall into the mantle by this mechanism

[3].

A related problem is the so-called China Syndrome

[4]. For a given size and rate of heat release, how fast

will a nuclear reactor core melt its way through the

earth? In this paper we will emphasize the problem in

which the required heat is generated within the sphere.

An alternative source of heat is the gravitational

potential energy of a heavy sphere which melts its way

through a solid medium. The potential energy is

converted into heat by viscous dissipation.

In order to carry out the analysis we assume that the

sphere of radius R is fixed and that the solid medium

moves toward the sphere at a velocity 110(see Fig. 1).We

assume that the flow of melt is confined to a thin layer of

thickness 0 in front of the sphere. We will see that

(1JfR) « 1 whenever the Peclct number is much greater

than a known function of the Stefan number. Behind

the sphere is a cylindrical molten wake. When

(ojR) « 1,we can use the lubrication approximation to

simplify the Navier-Stokes equation. In Stokes's

problem the inertial elTects are negligible if Re« 1.

However, if the flow is confined to a thin layer, then the

inertial terms can be neglected if(bjR)Re« 1 [5]. We

assume that drag and heat flux are negligible on the.

base of the sphere. The energy equation is solved using

an approximate integral method. The related problem

mrr 26:11-D 1625
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The continu ity equation for boundary layer flow or

lubrication flow over a sphere is [5]

a ( . 0) . 0 av
;;- U Sin +Sin - = O.
vx ay

(8)

Inserting equation (3) into equation (8) and integrating

with respect to y yields

- I d
2p

(1 3 I 2) 1 dp
v = 2;/ dx 2 "3 y - 2y 8 - 211R dx

(
1 3 I 2) 1 2dp d8

x cot 0 - y - - }' <5 + - y - -, (9)
3 2 411 dx dx

where we have used x = RO and v(y = 0) = O. Then

inserting equation (7) into equation (9) and evaluating

at y = <5, we obtain

FIG. I. Geometry for Stokes's problem with melting.

of the melting of a block of ice by a hot plate has been

studied experimentally and theoretically by Emmons

[6].
v(y = <5) = -Uo cos O. (10)

n(R sin 0)2110 = 2nR8it sin 0, (4)

Assuming a solid spherical body, the boundary

conditions on tangential velocity are

where 8 is a funct ion of O. We assume 8/R « I so that

U/IIO » I. Thus it is a consistent approximation to

requireu = Oaty = 8.Thesolutionofequations(1)and

(2) is

(12)

(II)
er er a2 T

U-+V-=K--.
ax oy ay2

Integrating the second term on the LHS by parts and

evaluating the RHS yields

f. ~ ~(uT sin O}dy-uoTm cos 0 sin 0
o ax

= K sin 0[aT (y = <5)- aT (y = o)J. (13)
ay ay

The first term on the LHS of equation (13) is equal to

dd
x

[sin 0 I: «t dy1 (14)

since u(y = b) = O. Hence equation (13) becomes

dd
x

[sin 0 I: uT dyJ= uoTm sin 0 cos 0

+t.: sin 0 [~T (y = b)- aT (y = o)J. (15)
vy ay

Instead of solving the partial differential equation (11),

we integrate equation (11) over the molten layer to

obtain an ordinary differential equation in x. Related

approximate methods are the momentum integral

method of boundary layer theory [5] and the heat

balance integral method for the heat conduction

equation [7]. Multiplying equation (11) by sin 0 and

integrating with respect to y yields

Finally, we use conservation of energy to determine

the variation of the molten layer thickness with

colatitude. When (<5/R)« 1, the steady-state energy

equation becomes [5]

f .
~ aT f . ~ aT
'u- sin 0 dy+ v- sin 0 dy

o ax 0 ay

I a2T= K -- sin 0 dy.
o ay

(6)

(5)

(7)

(2)

(3)

(1)

u=o,

u = 0,

y=O:

}' = 8:

_ 1I0 R .
U =--SIn O.

2b

From equation (3) we obtain

1 f.~ -I dp
it = ~ 0 u dy = T2,/ dx b

2
•

Combining equations (5) and (6) yields

dp -611110R.
dx = b3 SIn O.

or

I dp
u = - - y(y-8).

211 dx

We next use conservation of mass to find the

relationship between the pressure gradient and the

molten layer thickness. We find the pressure gradient

by equating the mass flux ahead of the sphere to the

mass flux about the sphere, and then show that the

answer we obtain is consistent with the continuity

equation . From Fig. I, we see that

2. Al'\ALYSIS

We first consider conservation of momentum. Upon

application of the lubrication approximation, the

Navier-Stokes equation becomes [5]

a2u dp
II ay2 = dx'
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The requ ired boundary conditions on the tempera­

ture are

4

Y= 0:

y=i5:

Y= e5:

1'= To ,

r = Tm ,

aT = _ PmUo C cos O.
ay k

(16)

3

where we have used x = RO. With the boundary

condition d8/dO = 0 at 0 = 0, the solution to equation

(18) is

(24)

(26)

And in the limit St e -+ 0 this reduces to

Q = nR 2PmlloC.

00 2 3 4 5 6 -7 8 9 10
51e

FIG.2. For a solid sphere, 0 = ,,!(Sle)/uo cos O. where 0 is the
molten layer thickness, Uo is the velocity of the sphere , K is the

thermal diffusivity of the melt and 0 is colatitude.

In this limit th e heating required per unit time is the

latent heat of the volume nR211
0'

We next determine the drag on the spherical body.

From equations (3)and (7) we see that the shear stress is

of the order of (IllIoR/ (j2), while the pressure is of the

order of (IIIIOR2/ (j3). If«(j/R) « 1, then the drag due to

shear stress is negligible compared to the drag due to

pressure. Hence we evaluate the integral

Fd = 2nR 2 5:'2(p - Po) cos 0 sin 0 dO, (25)

where Po is the pressure at 0 = n/2 which we assume is

the pressure on the base of the sphere. Inserting

equation (19)into equation (7), replacing x with RO, and

integrating, we obtain

3 1 1 R 2 1 1 ~ 40
P- Po = 2K3f3(Ste) cos .

Substitution of equation (26) into equation (25) and

integrating yields

(19)

(17)

(20)

(21)

(18)

x Ste
(j= .

110 cos 0

(j = ".!(Ste) ,

110 cos 0

For small Ste, we find

The reduced latent heat of fusion C takes account of

both the latent heat offusion Land the internal energy

Cp(Tm - 1'",) ofthe solid medium as it is heated upstream

of the melting front. We further ' assume that the

temperature profile can be adequately represented by a

quadratic polynomial in y. The quadratic polynomial

that satisfies the boundary conditions (16) is

1'= To+y[-2(T
o-Tm) +Pmllo

C
cos oJ

() k

2[10':'" Tm PmlloC J+y - i 5 - 2 - - ~ C O S O .

where

Insert ing equ ation (17) into equation (15), we obtain

dt5 ,,[ 1108
-=--- -3Ste--
dO 110 sin 0 "

x (2 cos 0- sin
2

0)_20+20 8 "Ste oJ,
cos 0 110 cos

1{ 3 [9 J1 /2}
{(a)=2 T a - lO+ 4a2+70a+l00 .

Bence from equations (17) and (21) we see that the

temperature profile becomes linear in y as the Ste -+ O.
We see moreover that (e5/R)« 1 whenever Pe » f(Ste).

The dependence off(Ste) on Ste from equation (20) is

given in Fig . 2.

As mentioned above, we neglect the heat flux to the

base of the sphere. Thus the total heat loss from the

sphere is given by

(28)

(27)

r, /2 er
Q= -2nR

2 Jo kay(Y = O)sin 0 dO. (22)

m1R411~

Fd = 2K3f3(Ste)'

And for small values of Ste, we obtain

m 1 R 4 1 1 ~

Fd = 2K3(Ste)3'

From equation (19) we see that the lubrication

approximation, «(j/R) « 1, is invalid for colatitude

o ~ 0*, where

0* = (1/IO)cos- 1 [f(Ste)/Pe]. (29)

Subst ituting equations (17) and (19) into equation (22), .

we obtain

2 . [2(10-Tm) PmC]
Q = 7tR kilo Kf(Ste) - k . (23)

However, we can easily show that the contribution to

the heat flux and drag from the region 0* ~ 0 ~ n/2

goes to zero asf(Ste)/Pe goes to zero. Evaluating the

integral in equ ation (22) between 0* and n/2 yields

equation (23) multiplied by [f(Ste)/Pe]2. Evaluating
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3

2

medium due to the density difference between the

sphere and the medium. We assume that heat is

generated within the sphere at a rate 1I per unit mass .

The total heat loss is related to the heat generation by

4
Q = 37T.R 3

psH , (34)

00 2 3 4 5 6 7 8 9 10
SIc

FIG. 3. For a fluid sphere, 0 = Kg(Ste}/uo cos 0, where 0 is the
molten layer thickness, K is the thermal difTusivity of the melt

and 0 is colatitude.

(35)

(36)

(37)

Thus for small rates of heat production the velocity of

the sphere is linearly dependent on R and II and is

independent of the buoyancy force and melt viscosity.

The buoyancy force and melt viscosity are contained in

equation (35) through their relation to To.

The buoyancy force on the spherical body is given by

4
Fb = 3 7T.g/l pR3

,

where Ps is the density of the spherical body. The

isothermal boundary condition on the surface of the

sphere is still applicable if the thermal conductivity of

the sphere is assumed to be much greater than the

thermal conductivity of the melt. For a fluid sphere,

vigorous internal convection could maintain the

isothermal boundary condition. Combining equations

(23) and (34) we obtain

(4/3)(RPsH/k)

which is a balance between the heat generated within

the spherical body and the heat lost to the molten layer.

IfH is sufficiently small, the Stefan number is also small

and equations (24) and (34) combine to give

4 RPsH
tlo=---

3 PmG'

(30)

(31)

y=O:

We follow the same procedure as above to obtain

dp - 3fltloR . 0
dx = 2cP Sin,

and

the integral in equation (25) between O· and 7T./2 yields

equation (27) multiplied by [f(Ste)/Pe]6.

We also consider the drag and heat flux for a fluid

sphere for which the viscosity of the molten medium is

much greater than the viscosity of the sphere and for

which the surface tension is sufficiently great to

maintain the spherical shape. In this case the thermal

boundary conditions are the same as before and the

velocity boundary conditions become

all
v = 0, ay = o.

J. DISCUSSION

We now use the above analysis to find the velocity of

a hot solid sphere which rises or falls through a cold

1
g(a) ="7 {-40-9 Ste

+[1600+ 12S0Ste+Sl(Ste)2r/2}. (33)

The results for heat flux for a fluid sphere are identical to

those for a solid sphere withf(Ste) replaced by g(Ste).

The drag on a fluid sphere is a quarter the drag on a

solid sphere with f(Ste) replaced by g(Ste). The

dependence of g(Ste) on Ste from equation (33)is given

in Fig. 3.

Results (31H33) assume that the fluid sphere is

inviscid. If the viscosity of the fluid sphere and the

viscosity of the molten medium were comparable, then

it would be necessary to take into account the internal

dynamics of the fluid sphere. There would be an

additional drag due to the flow within the sphere and

the net drag would be increased accordingly.

(39)

(40)

where /lp = Ps- Pm' Equating this buoyancy force to

the drag given by equation (27) yields

. [89/lPK3f3(Ste)] 1/4

110 = 3flR . (3S)

Since (8/R)« I, we can neglect the density difference

between the solid medium and the molten medium. For

small Ste, equations (2S) and (37) combine to give

G (3RfI1l6)1/3
To=Tm + - -- .

KCp Sg/lp

Substitution of equation (35) gives

4 1 (fIP: H
4
R

5)1/3
To=T.+--

m 3 KC
p

2g/lp~p~ .

IfR, H, and the physical properties are prescribed, it is

in general necessary to solve equations (35) and (3S)

numerically for To and tlo. However, if II is sufficiently

small, tlo can be obtained from equation (36) and To

from equation (40).

As a specific example we consider the China

Syndrome problem. We assume that after meltdown a

nuclear reactor core can be modeled as aspherical body

with internal heat generation. Our object is to

determine how fast the core will melt its way into the

(32)
8 = Kg(Ste) ,

tlo cos 0

where
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interior of the earth. For rock properties we take

k = 0.01 cal cm- I S-I °C-1, Pm = 2.7 g cm >', ,,=
0.01 cm 2 s-1,c p = 0.25 cal g-I S-I, 11= 100 poise, L =
100 cal g-I, Too = O°C and r; = 1200°C [8]. For the

reactor core we take P. = 9 g cm - 3, R = 150 ern, and

use the Wigner-Way empirical correlation for heat

production

with II0 = 5.3 cal g-I s -I and t in seconds (R. J. Miller,

personal communication). The dependence of10and !/o

on llfrom eq uations (35)and (38) is given in FigA. Also

included are the small II approximations from

equations (36) and (40).

With the heat production prescribed as a function of

time by equation (41), the temperature and velocity

of the sinking reactor core are obtained from equa­

tions (35) and (38). The velocity is then integrated

to give the depth of the reactor as a function of time.

In Fig. 5(a) we have assumed Ho = 5.3 cal g-I s-1,

in Fig. 5(b) H o = 0.53 cal g-I s-1, and in Fig. 5(c)

II0 = 0.053 cal g - I S- I. If the reactor core has its full

heat productivity it will melt its way to the earth's core

in about 2000 years. If this heat productivity is reduced

by a factor of 10 due to dilution or other effects it will

Time (10' yrs)
20 400 ° " f - - - - = r - ~ - - _ _ _ _ T " - - - - _ _ ' l 6 0

25

(b) 30'--------------"---..J
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FIG. 4. The solid curves are obtained from numerical
integrations of equations (35) and (38) which give (a) the
temperature and (b) the velocity of the reactor core as a
function of the internal heat production rate. The dashed lines
are the small II approximations from equations (36)and (40).
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FIG. 5. The depths of a reactor core as a function of time as it
melts its way into the interior of the earth for (a) II = 5.3 cal

g-I s-t, (b) 0.53 cal g-I S-I, and (c) 0.053 cal g-I S-I.

take about 30000 years, and if the dilution is by a

factor of 100 it will take about 500000 years.

It should be emphasized that many approximations

are involved in the application of our analysis to the

China Syndrome problem. Probably the most serious is

our assumption that, after meltdown, it is appropriate

to consider the reactor core as a coherent body. It may

be very substantially diluted by mixing with other

structural units. Although we have attempted to model

this effect by reducing H by factors of 10and 100, this is

certainly only an approximation. Also the reactor core

may not be spherical, but this is unlikely to introduce

large errors.
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PROBLEr.1E DE STOKES AVEC FUSION

Resume-On traite la trainee d'une sphere rigide chaude qui se deplace en fondant sur son chemin un milieu
froid. La temperature de la sphere est maintenue par une source interne de chaleur. Lemilieu froid est solide et
ne deforme que lorsque la sphere Iercchauffeau dessus de son point du fusion. On trouve que l'ecoulcment est
confine aune couche mince sur l'hemisphere amont quand Ie nombre de Peclet est superieur aune fonction
connue du nombre de Stefan. On applique les resultats au syndromechinois et on montrequ'il faut deux mille

ans aun coeur de reacteur nucleaire pour arriver au coeur de la Terre a travers la couche solide.

DAS PROBLEM VON STOKES MIT SCHMELZVORGANGEN

Zusammenfassung-In diesem Aufsatz wird der Widerstand ermitteIt, den eine heille,starre Kugel erfahrt,
welche sich ihren Weg dureh ein kaItes Medium schmilzt. Die Temperatur der Kugel wird durch innere
Wiirmequellen aufrechterhalten. Das kalte Medium ist fest und deformiert sich nur dann, wenn es durch die
heille Kugel iiber seinen Schmelzpunkt erwiirmt worden ist. Es zeigt sich, daB die Striimung auf cine diinne
Schicht an der vorderen Hiilfte der Kugel begrenzt ist, so lange die Peclet-Zahl wesentlichgriiBer ist als eine
bekannte Funktion der Stefan-Zahl, Durch Anwendung der Ergebnisse auf das Problem des "China­
Syndroms" wird gezeigt, dall sich der Kern eines nuklearen Reaktors innerhalb von ungefahr zweitausend

Jahren einen Weg durch die feste Erdkruste hindurch bis ins Zentrum der Erde schmelzen kann.

3A,uAQA CTOKCA B CJ1YQAE nJIABJ1EHHR

AHHOTa\lHlI-,uallo peureaue 1V1R onpeneneuns Jl060BOro conporuanenas, ncnsrrstaaesroro narperoii
ynpyroil cljJepoii, nponnaansrourell XOJlO.aHYIO cpeny, Texmeparypa cljJepLi nonaepxnaaerca sa cser
snyrpeaaero IICTO'lHIIKa TenJla. Xononaas cpena npencraanser cotion TBepJlhlii MaTepllaJl, xoropun
. a e l j J o p ~ l I I p y e T C f t TOJlhKO OT .aeiiCTBIIR cljJephl, narperoil asnue TO'lKII nnaaneuna. Hauneao, 'ITO
Te'lelllle MaTepllaJla orpanuxeuo TOHKIIM c,10e~1 y nepenaeii nonycpepsr, xorna '1I1CJlO Ilexne
HaMlloro npeasnuaer 113BeCTllYlO ljJyllKltlllO '1I1CJla Crecaua. Flonyxeunsre peaynsraru ucnonsaoaauu
D.-1ft peurenns 3aJla'll! "xnraiicxoro CIIH.apoMa" II noxaaauo, 'ITO npasrepno xepea nse ThlCft'll! ,1eT
axraanas aoua anepnoro peaxropa Morna 6hl nponnaanrs TBepJlylO MallTi110 3eMJlII II JlOCTII'Ih

ee aapa.


