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The problem of the “self-burial” of radioactive waste into melting rock is solved for a spherical
container of finite thickness. The mathematical model constructed, unlike the existing ones,

takes into account the thermal losses to the solid rock and to the melt behind the container, as well
as the reverse evolution of heat upon solidification of the melt. A calculation for the

particular case of self-burial in granite shows that consideration of these factors significantly
increases the maximum permissible radius at which the container will remain in the solid state and
slows the burial rate. €1999 American Institute of Physids$$1063-784£9)02211-4

One of the promising methods for the final disposal of 1 %2
radioactive waste is “self-burial.” Due to the evolution of T(r,6) =T+ = 3 c gl —2)
heat accompanying radioactive decay, a container with ra- ¢

dioactive waste melts the surrounding rock and sinks into it K. C
under the action of its own weight. The increase in the +_'(1_§)+E _“r*npn(g) 1
amount of heat expended on melting the rock during the 4ke Q,
accelerated downward migration in the initial stage ensures

that the process will pass to a steady state. The problem of T, &) =Tt = 4 h”{ ki¢ (__1)

the steady migration of a spherical heat source was treated in 3 ¢y | 4ke

Ref. 1 under the assumption that the temperature of its sur-

face is uniform. As was shown in Ref. 2, this condition does % n+1+nﬁ pxn

not correspond to reality. The temperature reaches a mini- (2n+ 1)Q ke

mum at the lower critical point and a maximum at the upper,

diametrically opposite point. It also increases with increasing Kil oni1x—no1

radius. Therefore, to keep a container in the solid state, its 1- ke e Pn(é) - (2

radius must not exceed a maximum permissible value at

which the surface temperature reaches the melting point dfience follow the expression for Stefan’s number

the container. The dependence of the limiting radius and the

corresponding maximum burial rate on the thickness and S(g)_ [T (&)— Tm]— v z ChPx(

thermal conductivity of the container was investigated in h

Ref. 3 It was assumed in thos_e st_ud|es that.the heat flux in T (6)=TR,&) 3)

the direction opposite to the direction of motion can be ne-

glected and that the heat flux in the direction of motion isand the expression for the heat flux from the source to the

completely expended on melting the medium. The reversgurrounding medium

evolution of heat upon solidification of the melt behind the JTe 4 hok
. 14

heat source was not taken into account. The purpose of the —k —(R &)=

present work is to solve the problem of the self-burial of

radioactive waste in a spherical container of finite thicknesgyere

without these assumptions.

3cR|4 ——nzl nrncnPn(a} @

2
. ) e i r C.aR
The stationary axisymmetric id|str|bu.t|ons of the. tem (f=— . E=cos®, v= pdR; . h=hytc,Tm,
perature in the radioactive wast&'] and in the container R hk;
c . .
wall (T°) satfsfy the equations . 1 . n+1 (kc 1)(1 -
I | _— _ — ,
i r2£ +i ( _fzﬂ :_ﬂrz r<R. n Qn 2n+1 ki
ar ar o€ € ki’ t R
2n+1 i
g dT¢\ 4 aTe Q=1-5—"7 1—— (1=, =4,
2L _en | ] n+1 R
ar | f m)Jr&g[(l &)5¢|=0 Ri<r<R. @

C, are arbitrary constants;and@ are spherical coordinates;
Their solution with allowance for the conditions of con- P, (¢) are Legendre polynomials;is the heat output power

tinuity of the temperature and the heat flux at the inner suref the radioactive wastek; and k. are the thermal conduc-

face of the wall can be written in the fofm tivities of the radioactive waste and the containgy; Tp,,
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and h,, are the specific heat, melting point, and heat of the
phase transition of the mediur®;, andR are the inner and
outer radii of the container; and their ratiois chosen from
considerations of mechanical strength and is henceforth con- a [ J ( zaT

sidered fixed for different values &. = 2| ar r ar) 9E ¢
The region of the melt in front of the heat sourcé (

>0) forms a thin layer, in which flow is described by the According to the assumption made above, this equation is

methods of lubrication theory. In the reference frame associalso valid for the distribution of the temperatufé in the

ated with the source the velocity field and the pressure argelt at£<0. Its solution has the form

specified by the equatiohs

( aT 1—52(9T)
MR-

-7

} ©

B
3 T(r,§)= —5rre
Vo=V—|1+— 1—1) sin®, \/— ?
o &
B
J\2 y xZ EnKns %<§r*>Pn(§),
v,=—V e 3—2; cos® e
r>R+ 9,
L do 1 3(1 y) o - B
e S'n 1
02" 5|7 & T 8=Tn +J— ——r g)EO{F“K“%(Er*)
1;V mzsin® oo s B
p=pot+ 53 de, y=r -1, _ﬁ’ +Gn|n+ %(Er*)}Pn(g),
©)
R<r<R+4, &<O0, (10

where é is the thickness of the layew is the viscosity co-
efficient, andV is the burial rate. whereK,; 1(x) andl,, 1(x) are Bessel functions of imagi-

In the region of the melt behind the sourc&<(0) the  nary argument3=VR/a, anda=k/pc,.
burial rate and pressure are assumed to be constant and equal The density, specific heat, and thermal conductivity of
to V andpg, respectively. The tangential stresses on the surthe medium in the solid and liquid phases are assumed to be
face of the source are small compared with the pressurddentical. The arbitrary constanks,, F,,, andG,, are speci-
Therefore, the drag force of the melt equals fied by the boundary conditions

1 TSR+ 68,6)=TI(R+68,6)=Tp,
Fzszzf pédé=6mnRV], ( H=T O=Tn
-1

T(R.&)=TYR,£). 11
J=fl(l—§2)5*_3 de. 6 Confi_ning ours_elves to the Ieading_ terms of the
0 asymptotic expressions of the Bessel functions

Equating the difference between the weight and the . |\ 12
buoyant force to this expression for the drag, we obtain the Kn+ 3(X)= 2% exp(—Xx),
equation
1
n _
VJ:§gR (p1=p)s  p1=pctE3(pi—po), (7) e 3000 1/2[e PX) = (= 1) exp=x) ],

where p;, pe, andp are the densities of the radioactive W€ have
waste, the container material, and the medium, quigl the

acceleration of gravity. TS(r, &)= ex;{ _ E(r* —1-6%)(1+¢&) |,
The main contribution to the integrdl is made by a 2
small vicinity about the poinE=1. Now setting F>R+ 5
S (§)=8" (1)=& (1H(L-9)
_ _ o _ h S(&) 1-exf —B(1+8* —1*)]
and takings* as the integration variable, we obtain up to the T(r,&)=Tp+— .
leading term Cpor 1—-exp(—B5*)
:; (8) Xexr{_g(r*_l)(l"‘f) ’
S (VL& (D)?
R<r<R+4, ¢<0.

The axisymmetric distribution of the temperature in the
solid phaserT® satisfies the equation

From the boundary condition
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f S

aT . d B 2 3 2 s
—ké’—r(R-l-é,g)—_hmpV§—k&—r(R+5,§), (13 ¢=D|1+—=|+(1-D)é— 4—0[(1—§ )S]’, (18

B

where = hypV¢ is the quantity of heat spent on melting the whence it follows that up to the leading term we have
medium in front of the heat source and given back upon

solidification behind it, we obtain the equation of the phase s

boundary at<0 S*=—o. (19
Be

2D
(1+6*)[D+(3D-1)¢]+ B The prime sign denotes a derivative with respectto

Using (8) and(19), we bring Eq.(7) into the form

S(§) r{ B
=————exg — 760 (1+ 9|,
Iom—por) 279 g1 QVBBTDR  ay 0
o1 2 [sm 7 gR%pa—p)
p'm
= (14)
2h From (12) and(14) we find
and the expression for the heat flux from the melt into the p
solid phase at>0 —k—
k(R
k[? f R+68,&)= kh 1-D D 2 15
kg (R 8.6)=2l(1-D)BE+D(B+2)]. (19 f@[D(l 3)
c,R
The distribution of the temperature in the melt in front of P p
the heat source is found by a parametric method of +(1-D)é— i[(1—§2)5]’} £=0
boundary-layer theory. Integrating the heat conduction equa- 20
tion khg 1+§+ 1)
oT! . oTt  a 92T ~ cpR 2 B
"y 0 R 5y? - (1+5*)(D+3D§—§)+?}
over the thickness of the layer and taking into account the B
continuity equation Xex;{ — E5*(1_ g)} ) £<0.
oM, ¢ oo \
Sin W‘F%(V@ sin®)=0, (21)
we obtain the integral relation To determine the constan®, we have the boundary condi-
, tion
F VoT' sin® dy| +VT [é—(1-£2)6* ']
’ k i R —k(ﬂ—f R 22
aloT! e e (RE=k—-(RE). (22
=R W(&&)‘@(O,S)}- (16)

In the limiting case of8=0 and =0, it follows from
We approximatel" by a trinomial, which is quadratic with (14) and (19) that S=0 andC,=0, i.e., we obtain the sta-
respect toy and whose coefficients are defined by the conditionary solution for an immobile container with a surface

tions (11) and(15), temperaturel ,,. The heat flux21) in all directions reduces
to kT,,,/R. According to(4) and (22), the radius of such a
Ty =Tt h 1 l) container equals
Cp & 112
3kTp,
s Ro=| —— (23
X1 S+y D(,8+2)+(1—D),8§—§ . a¢
(17) Thus, self-burial is possible under the conditi@p Ry.

As R is increased, the exponential functions(#1) rapidly
The relation(16) with allowance for(5) and (17) gives the  decrease; therefore, we shall henceforth neglect the corre-
differential equation fors sponding terms. The resulting error in the determination of
1-¢ S the burial rate is not more than, i.e., the value obtained for
S = ——, R=Ry. Multiplying (22) by P,(£) and integrating oveg
20 B&* from —1 to + 1, we obtain the infinite system of equations

D(B—8)+(1-D)Bé+ 23




1380 Tech. Phys. 44 (11), November 1999

4ny 3
nraCnt E ck{ T5PK(O)P(0)

3 k+n
10(n+ 1H)—-(—-1)

3+
"t

ot Win-1

n+1
2n+1

1)k+n

\I,k,n+1

+(—l)k+n

2
1+ E Wy

X
2

oof1

1 K;
‘I’k,nZI P(§)Pn(€) dé, X=7, n=01,....
0
(24

We confine ourselves to a finite numbérof the con-
stantsC, and the firstN equations. FON=2 we have

¢ 3
EJ P (f)dg—z—VQn,

lI’On_*_(:l- D)qjlnv

34, 34,

0=, A 1=

4 o a
S(l)=§v(CO+C1), 3(1):§VC1;
Ay= 2 1+ 2y 19 ! 7+8xI'1)D

1 59D I'1(1+D l 97+ 77D
A= 1+ L +6D
1=X¢v| — %,3

! 35+47D ! 15+7D) B2

+5p(39F ),3+4—0( +7D)p%,

119
(43+ 64xI' ) B+ 5+

A=1+8xT';1+ o5 300 (25)
The parametep is found from the equation
A
Ao=A1=7S(1), (26)
where, according t¢20),
s1)= X[ 2) 55+ 20)° 2
(D=3 A, B(B )°. (27)

SinceS(1)<1, Eq.(26) reduces to a quadratic equation.

WhenR>R,, it has one positive root

1 2 1/2
B(v)= m{[SGL +(277+161D)M ] —GL},

L=110+ 153D +40yT4(1+D)—5x{w,
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FIG. 1. Physical model of the geometry of the problem.

1 1
M=§X§V(5+4)(Fl)—5(19+8xfl)D, (28

which specifies the dependence of the burial rate on the ra-
dius and heat output power of the heat source, as well as the
physical characteristics of the medium. Accordind2p the
maximum temperature is achieved on the lfre—1 at the
point

§2
r*=—4-—Cy; 29
m Ql 1 ( )
and equals
hy K; ot
T(rr,—D)=Tp+t =—|1+2—(1- )+ —(r5+2Q,)|.
6c, K¢ 4

(30)

The container has its highest temperature at the upper critical
point on the inner surface of the wall:
{
Q_l Co .

(31)

4hV
TYR,—1)=T, + 1-0)+|1

4k(

Equating it to the melting point of the containgy , we
find the maximum permissible value of

{
(“n—l

—S, (445+464¢T" 1),

[876D +(277+161D)3, ]

Vy=

G
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FIG. 2. Thickness of the melt zone &t-0. FIG. 4. Plots of the dependence of the maximum radius and burial rate on
G=180y¢| 1+ i _ ﬁ(445+ 464yT 1) (1— ), &£=1 the container is in direct contgct with the splid mgdium
Q1) ke and has a temperature exceeding its melting point by

c 0.14 °C. The maximum temperature within the container at
S, :FD(T* —Tm). (32)  the pointr},=0.639, §=_ —1 equals 3540.96°C. The _mel'_[
zone and the computational model of flow are shown in Fig.
Substituting it into(26), we obtain a quadratic equation 1. In Fig. 2 curvel corresponds to the boundary of the melt
for the corresponding valug= g8, . According to the defi- zone in the regioré>0 defined by Eq(18), and curve2
nitions of these parameters, the maximum radius and buriglorresponds to the approximate formuled). In the range

rate are found using the formulas 0.5<¢=<1 they essentially coincide. The maximum differ-
12 ence between them g&=0 amounts to 0.019. Since the mo-
1 hkl a . . . " .
R,==|—vwv,| , Vy==—248,. (33  tion of the container depends mainly on the conditions in the
£lcyq Re vicinity of £&=1, the accuracy of formulél9) is fully satis-

WhenN>2, the problem requires a numerical solution. factory. Formula (6) with allowance for (19) gives J

Let us consider the case of the self-burial of radioactive= 139-04< 10°, and the value obtained from the approximate
waste housed in a container composed of the highformula(8)is 0.05% higher. According t#3), R,=0.338 m
temperature ceramic NbC in granite whep=130000 corresponds to a zero burial rate. Figure 3 shows a plot of
W/m?3. We take the following values for the physical con- V(R) specified by formula28). For the radiusR, it gives
stants (in S| unit9:* p=2700, c,=1301, k=3.013, hy, V(=68.39 mlyear, which represents the maximum error
=585800, T,,=1200°C, »=10; p.=7820, k,=44, T, caused by neglect of the exponential term(21). As { is
=3480°C;p;=7800, k; = 36. increased from 0.5 to 1, the radii decreases from 2.683

For {(=0.9 we obtain R,=1.221 m, V,=376.28 10 1.025 m, andV, increases roughly according to a linear
mlyear, S(1)=0.855<10"% S'(1)=-0.684, &*(1) law from 150.08 to 429.94 m/yedFig. 4). A comparison
=0.359< 10 °, and 6* (—1)=4.012. with the results in Ref. 2 fof=1 shows that consideration

At the point £=0 the expression§l4) and (19) give of the heat flux and the reverse evolution of heat upon so-
fairly close valuess* (—0)=0.092 ands* (+0)=0.099. At lidification of the melt at{<0 increases, by 0.298 m and
diminishesV, by 44 m/year. The melt zone behind the con-
tainer becomes 1.5 times longer.

The results obtained depend weakly on the choice of the
value ofN. For example, foN= 10 the values oR, andV,
300 - increase by 1.53% and 0.51%, respectively, and Nor
=100 they increase by 1.62% and 0.56%.
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FIG. 3. Plot of the dependence of the burial rate on the container radius for
£=0.9. Translated by P. Shelnitz



